Участник:Quarter — различия между версиями
Quarter (обсуждение | вклад) (→Распределение степеней вершин) |
Quarter (обсуждение | вклад) (→Распределение степеней вершин) |
||
(не показаны 4 промежуточные версии этого же участника) | |||
Строка 2: | Строка 2: | ||
{{Определение | {{Определение | ||
|id=def_degree_dist | |id=def_degree_dist | ||
− | |definition='''Распределение степеней вершин случайного графа''' - это функция <tex>P(x)</tex>, определённая на <tex>\mathbb{R}</tex> как <tex>P(\xi=x)</tex>, то есть выражающая вероятность того, что вершина <tex>\xi | + | |definition='''Распределение степеней вершин случайного графа''' - это функция <tex>P(x)</tex>, определённая на <tex>\mathbb{R}</tex> как <tex>P(\xi=x)</tex>, то есть выражающая вероятность того, что вершина <tex>\xi</tex> имеет степень <tex>x</tex>. Другими словами, распределение степеней <tex>P(k)</tex> графа определяется как доля узлов, имеющих степень <tex>k</tex>. |
}} | }} | ||
{{Пример | {{Пример | ||
Строка 10: | Строка 10: | ||
{{Утверждение | {{Утверждение | ||
− | |statement= | + | |statement=Дан случайный граф <tex>G(n, p)</tex> в биноминальной модели. Тогда для него распределение степеней вершин |
<p> | <p> | ||
<tex> | <tex> | ||
Строка 34: | Строка 34: | ||
<tex>P(\exists v: \; deg(v) = k) = P(k)</tex> | <tex>P(\exists v: \; deg(v) = k) = P(k)</tex> | ||
− | <tex>P(k)</tex> - вероятность того, что вершина имеет степень <tex>k</tex>. Тогда вероятность того, что имеет одну из степеней <tex>1...k</tex> - <tex>\sum_{x=1}^{k}P(x)</tex>. Нам нужно обратное событие, при наступлении которого вершина имеет степень больше <tex>k</tex>. Его вероятность равна <tex>1 - \sum_{x=1}^{k}P(x)</tex>. | + | <tex>P(k)</tex> - вероятность того, что вершина имеет степень <tex>k</tex>. Тогда вероятность того, что имеет одну из степеней <tex>1...k</tex> - <tex>\sum_{x=1}^{k}P(x)</tex>. Нам нужно обратное событие, при наступлении которого вершина имеет степень больше <tex>k</tex>. Его вероятность равна <tex>1 - \sum_{x=1}^{k} P(x)</tex>. |
− | <tex>P(!\exists v: \; deg(v) > k) = 1 - \sum_{x= | + | <tex>P(!\exists v: \; deg(v) > k) = 1 - \sum_{x=1}^{k} P(x)</tex> |
− | События независимы, поэтому получаем: <tex>Q(k) = P(k) \cdot (1 - \sum_{x= | + | События независимы, поэтому получаем: <tex>Q(k) = P(k) \cdot (1 - \sum_{x=1}^{k} P(x))</tex> |
}} | }} |
Текущая версия на 00:48, 17 июня 2021
Распределение степеней вершин
Определение: |
Распределение степеней вершин случайного графа - это функция | , определённая на как , то есть выражающая вероятность того, что вершина имеет степень . Другими словами, распределение степеней графа определяется как доля узлов, имеющих степень .
Пример: |
Если есть в общей сложности | узлов в графе и из них имеют степень , то . Другими словами, равно вероятности того, что отдельно взятая вершина имеет степень .
Утверждение: |
Дан случайный граф в биноминальной модели. Тогда для него распределение степеней вершин
|
Действительно, если вероятность появления ребра схема Бернулли). Таких наборов рёбер у одной вершины всего , откуда получаем искомое распределение. | , то вероятность появления ровно рёбер у вершины равна (
Распределение максимальной степени вершин
Определение: |
Распределение максимальной степени вершин случайного графа - это функция | , определённая на как , то есть выражающая вероятность того, что максимальная степень вершины равна .
Утверждение: |
Будем выводить формулу для через распределение степеней вершин .Максимальная степень вершины равна тогда и только тогда, когда не существует вершины степенью больше . Таким образом, нужно посчитать вероятность события .
- вероятность того, что вершина имеет степень . Тогда вероятность того, что имеет одну из степеней - . Нам нужно обратное событие, при наступлении которого вершина имеет степень больше . Его вероятность равна . События независимы, поэтому получаем: |