Список заданий по теории сложности 2022 — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показана 1 промежуточная версия 1 участника)
(нет различий)

Текущая версия на 19:26, 4 сентября 2022

  1. Докажите, что объединение, пересечение, конкатенация и замыкание Клини языков из $NP$ является языком из $NP$
  2. В определении $NP$ мы говорим, что при любом недетерминированном выборе программа должна завершиться не более чем за $p(n)$, где $p$ - полином, а $n$ - длина входа. На самом деле это требование может быть ослаблено, можно требовать, чтобы программа завершалась не более чем за $p(n)$ только в случае допуска. Докажите, что в таком определении класс $NP$ не меняется.
  3. $PRIMES\in NP$. Язык $PRIMES$ определяется следующим образом: это множество двоичных записей простых целых чисел. Доказательство принадлежности $PRIMES$ классу $NP$ разбито на два задания. Часть 1. Известно, что если $n$ простое, то существует $g$, такое что $g^{n-1}=1\pmod n$ и для всех $1 \le k < n - 1$ выполнено $g^k \ne 1 \pmod n$. Пусть известно разложение $n-1$ на простые множители: $n-1=q_1^{a_1}q_2^{a_2}\ldots q_k^{a_k}$. Предложите полиномиальный алгоритм проверки, что заданное $g$ удовлетворяет описанному условию. Можно недетерминированно выбрать $g$ и недетерминированно угадать разбиение $n-1$ на простые множители. Однако это требует проверки на простоту, чтобы убедиться, что угадано разложение именно на простые множители. Завершите доказательство, что $PRIMES \in NP$, описав рекурсивную процедуру проверки и доказав, что она работает за полиномиальное время.
  4. Задача останова $HALT = \{\langle m, x \rangle | m$ - детерминированная машина Тьюринга, $m(x) = 1\}$. Докажите, что $HALT$ является $NP$-трудной. Является ли она $NP$-полной?
  5. Изоморфизм подграфа $NP$-полный. Докажите $NP$-полноту следующего языка. Множество пар $\{\langle G_1, G_2 \rangle | G_1$ содержит $G_2$ как подграф $\}$.
  6. Задача о покрытии подмножествами $NP$-полна. Докажите $NP$-полноту следующего языка. Даны $n$ множеств $S_i\subset\{1, 2, \ldots, m\}$ и число $k$. Язык наборов $SETCOVER = \{ \langle [S_1, S_2, \ldots, S_n], k\rangle$ можно выбрать не более $k$ множеств, чтобы каждый элемент от $1$ до $m$ лежал хотя бы в одном выбранном множестве $\}$.
  7. Задача поиска доминирующего множества $NP$-полна. Докажите $NP$-полноту следующего языка. Множество пар $DOM = \{\langle G, k \rangle | G$ содержит множество из $k$ вершин, таких, что любая вершина $G$ либо выбрана, либо имеет выбранного соседа $\}$.
  8. Задача о раскраске в три цвета $NP$-полна. Докажите $NP$-полноту следующего языка. Множество графов $3COL=\{ G | G$ имеет правильную раскраску в три цвета $\}$. Что можно сказать про раскраску в два цвета?
  9. Задача о рюкзаке $NP$-полна. Докажите $NP$-полноту следующего языка. Даны предметы с весом $w_i$ и стоимостью $v_i$. Язык наборов $KNAPSACK=\{ \langle s, [(v_1, w_1), (v_2, w_2), \ldots (v_n, w_n)], k\rangle | $ можно выбрать предметы с суммарным весом не более $s$ и суммарной стоимостью не менее $k \}$.
  10. Задача целочисленного линейного программирования $NP$-трудна. Докажите $NP$-трудность следующего языка. Множество систем линейных ограничений, которые имеют целочисленное решение.
  11. Неориентированный гамильтонов цикл. Докажите, что язык $UHAM = \{G | G$ - неориентированный граф, содержащий гамильтонов цикл$\}$ является $NP$-полным.
  12. Ориентированный гамильтонов путь. Докажите, что язык $HAMP = \{G | G$ - ориентированный граф, содержащий гамильтонов путь$\}$ является $NP$-полным.
  13. Говорят, что булева формула с кванторами находится в предваренной форме, если сначала идут все кванторы, а затем булева формула: $Qx_1Qx_2\ldots Qx_n \varphi(x_1,\ldots, x_n)$, где $Q = \forall$ или $Q = \exists$. Говорят, что булева формула с кванторами находится в КНФ, если она находится в предваренной форме $Qx_1Qx_2\ldots Qx_n \varphi(x_1,\ldots, x_n)$, где $Q = \forall$ или $Q = \exists$, причём $\varphi$ находится в КНФ. Говорят, что булева формула с кванторами находится в 3-КНФ, если она находится в предваренной форме $Qx_1Qx_2\ldots Qx_n \varphi(x_1,\ldots, x_n)$, где $Q = \forall$ или $Q = \exists$, причём $\varphi$ находится в 3-КНФ. Докажите, что язык истиных булевых формул с кванторами в 3-КНФ является $PS$-полным.
  14. $PS$-полнота Generalized Geography. Игра в Generalized Geography (GG) ведется на поле, которое представляет собой ориентированный граф с выделенной стартовой вершиной. Исходно фишка находится в стартовой вершине. Два игрока делают ходы по очереди, за один ход игрок перемещает фишку по ребру из текущей вершины. Запрещается перемещать фишку в вершину, где она уже ранее была. Игрок, который не может сделать ход, проигрывает. Докажите, что $GG = \{\langle G, s\rangle|$ первый игрок выигрывает на графе $G$ со стартовой вершиной $s\}$ является $PS$-полным языком.
  15. $PS$-полнота Shannon Switching Game. Игра Шеннона ведется на поле, которое представляет собой неориентированный граф с двумя выделенными вершинами $s$ и $t$. Два игрока Short и Cut делают ходы по очереди, Short ходит первым. За один ход Short может выбрать одну вершину и защитить её. За один ход Cut может удалить любую вершину, кроме $s$, $t$ и защищенных к текущему моменту вершин. В конце Short выигрывает, если по защищенным вершинам можно добраться от $s$ до $t$. Докажите, что $SHSW = \{\langle G, s, t\rangle|$ Short выигрывает на графе $G$ с выделенными вершиными $s$ и $t\}$ является $PS$-полным языком.
  16. $PS$-трудность языка полных регулярных выражений. Докажите, что $FRE = \{\langle \varphi\rangle|$ любое слово подходит под регулярное выражение $\varphi\}$ является $PS$-трудным языком.
  17. Класс $EXP$ определяется как множество языков $L$, для которых существует детерминированная программа, разрешающая $L$ за $O(2^{p(n)})$, где $p(n)$ - полином. Докажите, что $NP \subset EXP$.
  18. Класс $NEXP$ определяется как множество языков $L$, для которых существует недетерминированная программа, разрешающая $L$ за $O(2^{p(n)})$, где $p(n)$ - полином. Предложите понятие $NEXP$-полноты. По аналогии с $BH_{1N}$ определите язык $BH_{2N}$, докажите, что он является $NEXP$-полным.
  19. Петя свёл язык $A$ по Карпу к $NP$-полному языку $B$. Учитель утверждает, что из этого не следует, что $A$ является $NP$-полным. Помогите учителю подобрать пример.
  20. Предположим, что существует $NP$-полный язык, для которого существует решение за $O(n^{C\log_2n})$, где $C$ - константа. Что можно сказать про класс $NP$ в этом случае?
  21. Верно ли, что если $A \le B$, то $A \in P^B$? В случае, если вы не можете доказать свой ответ, можно привести разумные аргументы в его пользу.
  22. Верно ли, что если $A \in P^B$, то $A \le B$? В случае, если вы не можете доказать свой ответ, можно привести разумные аргументы в его пользу.
  23. Сережа дал такое определение $NP$-полноты: язык $L$ является $NP$-полным по Серёже, если $L \in P \Rightarrow P = NP$. Прокомментируйте определение Серёжи.
  24. Юра дал такое определение класса $NP$: это задачи, который можно решить перебором. Прокомментируйте определение Юры.
  25. Докажите, что найдется такой оракул $A$ и язык $L \in NP^A$, что $L$ не сводится к $3SAT$ за полином даже, если у сведения есть доступ к оракулу для $A$.
  26. Докажите, что если $L\in coNP$, то $L^* \in coNP$.
  27. Разработайте алгоритм проверки, является ли неориентированный граф, заданный списками смежности, ациклическим, используя $O(\log V)$ дополнительной памяти, где $V$ --- количество вершин графа. Алгоритм должен быть детерминированным.
  28. Докажите, что $2SAT \in NL$
  29. $BH_{1N}$ является $NP$-полным. Определите по аналогии $P$-полный язык.
  30. Определим $polyL$ как $\cup_{c>0}DSPACE(\log^c n)$. $PATH = \{\langle G, s, t\rangle,$ в ориентированном графе $G$ есть путь из $s$ в $t\}$. Докажите, что $PATH \in polyL$.
  31. Обозначим как $DP$ множество языков $L$, для которых найдутся $L_1 \in NP$ и $L_2 \in coNP$, такие что $L = L_1 \cap L_2$. Рассмотрим язык $EXACTINDSET = \{\langle G, k\rangle | \text{ максимальное}$ $\text{независимое множество в графе $G$ имеет размер $k$}\}$. Докажите, что $EXACTINDSET$ является полным для класса $DP$ относительно полиномиального сведения.
  32. Докажите, что $EXACTINDSET \in \Sigma_2 \cap \Pi_2$. Сделайте вывод про место $DP$ в полиномиальной иерархии.
  33. Предложите разрешимый язык из $P/poly$, который не лежит в $P$.
  34. Докажите, что $Sparse \subset P/poly$ ($Sparse$ - множество языков, которые имеют лишь полиномиальное число слов каждой длины).
  35. Докажите, что существует язык из $DSPACE(2^{O(n)})$, которой не принадлежит $SIZE(2^{o(n)})$.
  36. Докажите, что если $EXP \subset P/poly$, то $EXP = \Sigma_2$.
  37. Обозначим как $PP^+$ как класс языков, для которых существует вероятностная программа $M$, работающая за полином, что если $x \in L$, то $P(M(x) = 1) > 1/2$, а если $x \notin L$, то $P(M(x) = 0) \ge 1/2$. Докажите, что $PP^+ = PP$.
  38. Докажите, что $NP \subset PP$.
  39. Докажите, что если $NP \subset BPP$, то $NP = RP$.
  40. В определении $ZPP$ нет требования, чтобы на любой вероятностной ленте программа завершалась. Докажите, что если добавить это ограничение, определение класса $ZPP$ не поменяется.
  41. При симуляции $random(n)$ с помощью бросков честной монеты (или абстракции вероятностной ленты) математическое ожидание времени работы $random(n)$ равно $O(\log n)$, но нет ограничения сверху на число бросков. Кажется, что это может испортить определение классов $RP$ или $BPP$, потому что в них время работы программы должно быть ограничено сверху. Докажите, что это не так и можно разрешить конструкции $random(n)$ в вероятностных программах из определения $RP$ или $BPP$, даже если на самом деле в модели вычислений есть доступ к источнику случайности только с распределением честной монеты.
  42. Нечестные монеты с нерациональным $p$ могут привести к парадоксам. Докажите, что существует такое $p$, такой неразрешимый язык $L$ и такая программа $A$, что если у программы $A$ есть доступ к источнику случайности с распределением нечестной монеты с вероятностью выпадения $1$ равной $p$, то она может распознать язык $L$ за полиномиальное время.
  43. Полные языки для $BPP$. Будем называть $A\in BPP$ язык полным для $BPP$, если для любого языка $B \in BPP$ выполнено $B \le A$. Петя предполагает, что язык $BH_{1DP} = \{\langle p, x, 1^t \rangle\}$, где $p$ — вероятностная программа, допускающая $x$ за время $t$ с вероятностью не меньше $2/3$ является полным для $BPP$. Прав ли Петя?
  44. Вероятностные сведения. Будем говорить, что $B$ вероятностно сводится к $C$ и писать $B \le_r C$, если найдется такая вероятностная программа $p$, работающая за полином, что $P([x \in B] = [p(x) \in C]) \ge 2/3$. Докажите, что если $C \in BPP$, $B \le_r C$, то $B \in BPP$.
  45. Докажите, что $\le_r$ не является транзитивным отношением.
  46. Арифметическая схема - аналог булевой схемы, но на вход она получает $m$-битные неотрицательные целые числа, а вместо функциональных элементов используются арифметические: "$+$", "$-$" и "$\times$". Также на некоторые входы разрешается подать константы. Все вычисления происходят в целых числах. Разработайте вероятностный алгоритм проверки, что заданная арифметическая схема с $n$ арифметическими элементами равна нулю на любых входах, полиномиальный относительно $n$ и $m$.
  47. Рассмотрим следующее (неверное) доказательство, что $NP \subset BPP$. Решим для этого $NP$-полную задачу $CIRCUIT-SAT$. Рассмотрим булеву схему в базисе "$\oplus$", "$\wedge$", "$\mathbb{1}$". Превратим её в арифметическую схему, заменив элемент "$\oplus$" на "$+$", а "$\wedge$" на "$\times$". Теперь проверим её на вычисление тождественного нуля с помощью предыдущей задачи. В чём ошибка в рассуждениях?
  48. Интерактивное доказательство для перманента, часть 1. Перманент матрицы - $\mathrm{perm}(A)=\sum_{\sigma}\prod_{i=1}^n a_{i\sigma_i}$ - вычисляется по той же формуле, что и определитель, но суммирование происходит без $(-1)^{\mathrm{sign}(\sigma)}$. Можно показать, что вычисление перманента - трудная задача. Докажите формулу разложения перманента по первой строке $\mathrm{perm}(A)=\sum_{i=1}^n a_{1i}\mathrm{perm}(A_{1i})$.
  49. Часть 2. Рассмотрим $A_{1i}[j][k]$ как функцию от $i$. Докажите, что для всех $j$ и $k$ она является полиномом от $i$. Какой степени?
  50. Часть 3. Рассмотрим матрицу полиномов $D_A(x)$, элемент которой $D_A(x)[j][k]$ для всех $i$ равен $A_{1i}[j][k]$. Рассмотрим $\mathrm{perm}(D_A(x))$. Докажите, что он является полиномом от $x$. Какой степени?
  51. Часть 4. На основании предыдущих трех заданий и конструкции интерактивного доказательства для $\#SAT$ разработайте интерактивное доказательство для языка $\langle A, k\rangle$, где $\mathrm{perm}A = k$.