Материал из Викиконспекты
|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| ==Задача о перпендикуляре== | | ==Задача о перпендикуляре== |
| {{Определение | | {{Определение |
Текущая версия на 19:42, 4 сентября 2022
Задача о перпендикуляре
Определение: |
Задачей о перпендикуляре называется задача отыскания ортогональной составляющей и проекции вектора [math]x[/math], то есть его разложения по формуле: [math]x= \mathcal{P}_{L}^{\bot}x+ \mathcal{P}_{M}^{\bot}x[/math]
(где [math]\mathcal{P}_{L}^{\bot}x[/math] — ортогональный проектор на пп [math]L[/math], [math]L[/math] — пп унитарного пространства [math]E[/math], a [math]\mathcal{P}_{M}^{\bot}x[/math] — ортогональный проектор на пп [math]M[/math], [math]M[/math] — ортогональное дополнение [math]E[/math]). |
Способ 1(через ОРТН базис)
Утверждение: |
1) Найти [math]\{e_i\}_{i=1}^{k}[/math] — ОРТН базис [math]L[/math]
2) [math] \mathcal{P}_{L}^{\bot}x = \sum\limits_{i=1}^{k} \left\langle x,e_i \right\rangle e_i; \ \mathcal{P}_{M}^{\bot} x = x - \mathcal{P}_{L}^{\bot}x. [/math] |
Способ 2 (через систему уравнений)
Утверждение: |
Рассмотрим [math]\{a_1, a_2...a_k\}[/math] — базис [math]L[/math] (не ОРТН)
[math]x= \mathcal{P}_{L}^{\bot}x+ \mathcal{P}_{M}^{\bot}x=\gamma^1a_1 + \gamma^2a_2+...+\gamma^ka_k+\mathcal{P}_{M}^{\bot}x \ (*)[/math]
[math]
\begin{cases}
\left\langle a_1,(*) \right\rangle: \left\langle a_1,x \right\rangle = \overline{\gamma_1}\left\langle a_1,a_1 \right\rangle+...+\overline{\gamma_k}\left\langle a_1,a_k \right\rangle \\
\left\langle a_2,(*) \right\rangle: \left\langle a_2,x \right\rangle = \overline{\gamma_1}\left\langle a_2,a_1 \right\rangle+...+\overline{\gamma_k}\left\langle a_2,a_k \right\rangle \\
\cdot \\
\cdot \\
\left\langle a_k,(*) \right\rangle: \left\langle a_k,x \right\rangle = \overline{\gamma_1}\left\langle a_k,a_1 \right\rangle+...+\overline{\gamma_k}\left\langle a_k,a_k \right\rangle
\end{cases}
[/math]
Решая эту систему уравнений для неизвестных [math]\overline{\gamma_i}[/math], находим коэффициенты разложения [math]\mathcal{P}_{L}^{\bot}x[/math].
[math]\mathcal{P}_{M}^{\bot} x = x - \mathcal{P}_{L}^{\bot}x. [/math] |