Материал из Викиконспекты
|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| {{Теорема | | {{Теорема |
| |statement= | | |statement= |
Текущая версия на 19:14, 4 сентября 2022
Теорема: |
Для любой последовательности [math]a_0, a_1, \cdots[/math], удовлетворяющей условию [math]a_0\in\mathbb{Z}; a_i\in\mathbb{N}, i\gt 0[/math],
последовательность подходящих дробей для цепной дроби [math]\langle a_0, a_1,\cdots\rangle[/math] имеет предел. |
Доказательство: |
[math]\triangleright[/math] |
Возьмём нечётное [math]n[/math]. Для него верно [math]P_nQ_{n-1}-P_{n-1}Q_n =(-1)^{n+1}=1\gt 0[/math]. Тогда [math]\frac{P_n}{Q_n}\gt \frac{P_{n-1}}{Q_{n-1}}[/math]. Аналогично [math]\frac{P_n}{Q_n}\gt \frac{P_{n+1}}{Q_{n+1}}[/math]. Также верно, что [math]\frac{P_n}{Q_n}-\frac{P_{n-1}}{Q_{n-1}}=\frac{1}{Q_{n-1}Q_n}[/math] и [math]\frac{P_n}{Q_n}-\frac{P_{n+1}}{Q_{n+1}}=\frac{1}{Q_{n+1}Q_n}[/math]. Вычитая одно из другого получаем [math]\frac{P_{n+1}}{Q_{n+1}}-\frac{P_{n-1}}{Q_{n-1}}=\frac{Q_{n+1}-Q_{n-1}}{Q_{n-1}Q_nQ_{n+1}}\gt 0[/math]. Получаем, что последовательность из подходящих дробей с чётным номером возрастает. Аналогично последовательность из подходящих дробей с нечётным номером убывает. Следовательно последовательность подходящих дробей с чётным номером ограничена сверху, а с нечётным ограничена снизу. Значит они имеют предел. Но [math]\frac{P_n}{Q_n}-\frac{P_{n-1}}{Q_{n-1}}=\frac{1}{Q_{n-1}Q_n}\rightarrow 0[/math], значит эти пределы совпадают. |
[math]\triangleleft[/math] |
Теорема: |
Для любого вещественного числа [math]\alpha[/math] можно построить цепную дробь. |
Доказательство: |
[math]\triangleright[/math] |
Пусть [math]a_0=[\alpha][/math]. Далее [math]\alpha_1=\frac{1}{\alpha-a_0}[/math]. И определим все числа: [math]a_i=[\alpha_i][/math] и [math]\alpha_i=\frac{1}{\alpha_{i-1}-a_{i-1}}[/math].
Последовательность подходящих дробей имеет предел. Докажем, что он равен [math]\alpha[/math].
По тому какие мы брали [math]\alpha_i[/math] имеем [math]\alpha=[\alpha]+\frac{1}{[\alpha_1]+\frac{1}{[\alpha_2]+\cdots+\frac{1}{\alpha_k}}}[/math]. Теперь если взять вместо [math]\alpha_k[/math] целую часть, то есть [math][\alpha_k][/math], то дробь [math]\frac{1}{\alpha_k}[/math] увеличится, а дробь [math]\frac{1}{[\alpha_{k-1}]+\frac{1}{\alpha_k}}[/math] уменьшится. И так далее. Получим, что подходящая дробь [math]\frac{P_n}{Q_n}\lt \alpha[/math] при чётном [math]n[/math] и [math]\frac{P_n}{Q_n}\gt \alpha[/math] при нечётном [math]n[/math]. Значит пределом подходящих дробей будет [math]\alpha[/math]. |
[math]\triangleleft[/math] |