Равномерная сходимость функционального ряда — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 6 промежуточных версий 4 участников) | |||
Строка 108: | Строка 108: | ||
}} | }} | ||
== Признак Абеля-Дирихле == | == Признак Абеля-Дирихле == | ||
− | {{ | + | {{Теорема |
− | |statement=Для равномерной сходимости на множестве <tex>E</tex> ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) b_n(x)</tex> , <tex> a_n: | + | |author=Абель-Дирихле |
+ | |statement=Для равномерной сходимости на множестве <tex>E</tex> ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) b_n(x)</tex> , <tex> a_n:E \to \mathbb C</tex> и <tex> b_n:E \to \mathbb R</tex> достаточно, чтобы выполнялась пара условий <tex> \forall x \in E </tex>: | ||
1)Частичные суммы <tex> S_k(x)= \sum\limits_{n = 1}^k a_n(x) </tex> ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) </tex> равномерно ограничены на <tex>E</tex>; | 1)Частичные суммы <tex> S_k(x)= \sum\limits_{n = 1}^k a_n(x) </tex> ряда <tex>\sum\limits_{n = 1}^\infty a_n(x) </tex> равномерно ограничены на <tex>E</tex>; | ||
− | 2)Последовательность функций <tex>b_n(x)</tex> монотонна и сходится к нулю на <tex>E</tex>. | + | 2)Последовательность функций <tex>b_n(x)</tex> монотонна и равномерно сходится к нулю на <tex>E</tex>. |
− | |proof= | + | |proof= |
+ | |||
+ | Монотонность последовательности <tex>b_n(x)</tex> позволяет при каждом <tex>x \in E</tex> записать оценку: | ||
+ | |||
+ | <tex> |\sum\limits_{k = n}^m a_k(x) b_k(x)| \leq 4 max |A_k(x)| * max( |b_n(x)|, |b_m(x)| )</tex> | ||
+ | |||
+ | где <tex> n - 1 \leq k \leq m </tex> и в качестве <tex> A_k(x)</tex> возьмем <tex> S_k(x) - S_{n-1}(x) </tex> . | ||
+ | |||
+ | Если выполнена пара условий 1) и 2), то с одной стороны существует такая постоянная <tex>M</tex>,что <tex>|A_k(x)| \leq M</tex> при любом <tex> k \in N </tex> и любом <tex>x \in E</tex>, а с другой стороны, какого бы ни было число <tex>\varepsilon > 0 </tex>, при всех достаточно больших значениях <tex>m</tex> и <tex>n</tex> и любом <tex> x\in E</tex> будет выполнено неравенство <tex> max( |b_n(x)|, |b_m(x)| ) < \frac{\varepsilon}{4M} </tex>. Значит, что при всех достаточно больших значениях <tex>m</tex> и <tex>n</tex> и любом <tex> x \in E </tex> будет <tex>|\sum\limits_{k = n}^m a_k(x) b_k(x)| < \varepsilon </tex>, т.е. для рассматриваемого ряда выполнен критерий Коши равномерной сходимости. | ||
}} | }} | ||
[[Определение функционального ряда|<<]] [[Операции анализа с функциональными рядами|>>]] | [[Определение функционального ряда|<<]] [[Операции анализа с функциональными рядами|>>]] | ||
[[Категория:Математический анализ 1 курс]] | [[Категория:Математический анализ 1 курс]] |
Текущая версия на 19:07, 4 сентября 2022
Содержание
Поточечная сходимость
То, как была определена сумма функционального ряда, не учитывает то, что функция — закон соответствия, который каждому
сопоставляет некоторое число. При этом, все фигурировали изолированно.Пусть на
обладает свойством (например, непрерывность на ). И пусть для любого есть предел соответствующей числовой последовательности. Возникает вопрос: "Будет ли обладать свойством ?"Приведем пример, показывающий, что если требовать лишь поточечной сходимости, то для
свойство может отсутствовать.
Все
непрерывны на . , .: . Тогда, начиная с некоторого , все
Тогда
будет разрывна в нуле, свойство непрерывности не сохранилось.Равномерная сходимость
Возникает вопрос: "Что ещё надо потребовать от поточечной сходимости, чтобы в пределе
сохранилось?"Классическое требование: равномерная сходимость.
Определение: |
Пишут, что . | равномерно сходится к , если
Определение: |
Пусть на , если | задан функциональный ряд . Тогда он равномерно сходится к
Далее всё будем писать на языке функциональных рядов, так как их наиболее удобно использовать в
математическом анализе, и вообще это очень круто и популярно.
Критерий Коши равномерной сходимости
Теорема (Критерий Коши равномерной сходимости): |
Ряд равномерно сходится на |
Доказательство: |
Пусть ряд равномерно сходится.
, где — сумма ряда. Тогда
По определению равномерной сходимости, .
В силу предыдущего неравенства, , то есть, выполняется условие критерия Коши.
для выполняется критерий Коши сходимости числовых рядов. Значит, этот ряд сходится. На всем определена его сумма. Осталось установить равномерную сходимость ряда. По условию критерия Коши, Как и в первой половине доказательства, Значит, определение равномерной сходимости проверено. , но . В неравенстве с можно подставлять любой фиксированный . Устремим : |
Признак Вейерштрасса
Существует простой признак для проверки равномерной сходимости (признак Вейерштрасса)
Можно рассматривать
и при этом сохраняется терминология числовых рядов, связанная с абсолютной и условной сходимостью.Как и в рядах, абсолютная сходимость сильнее сходимости: из абсолютной сходимости вытекает сходимость.
Теорема (Вейерштрасс): |
, , , — сходится.
Тогда равномерно сходится на . |
Доказательство: |
Применим критерий Коши:
Сопоставляя с предыдущим неравенством, которое верно , . Тогда, по критерию Коши, ряд равномерно сходится. |
Признак Абеля-Дирихле
Теорема (Абель-Дирихле): |
Для равномерной сходимости на множестве ряда , и достаточно, чтобы выполнялась пара условий :
1)Частичные суммы 2)Последовательность функций ряда равномерно ограничены на ; монотонна и равномерно сходится к нулю на . |
Доказательство: |
Монотонность последовательности позволяет при каждом записать оценку:
где Если выполнена пара условий 1) и 2), то с одной стороны существует такая постоянная и в качестве возьмем . ,что при любом и любом , а с другой стороны, какого бы ни было число , при всех достаточно больших значениях и и любом будет выполнено неравенство . Значит, что при всех достаточно больших значениях и и любом будет , т.е. для рассматриваемого ряда выполнен критерий Коши равномерной сходимости. |