Лемма о единственном паросочетании в графе замен — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
 
(не показано 16 промежуточных версий 5 участников)
Строка 1: Строка 1:
 +
#перенаправление [[Граф замен#Лемма о единственном паросочетании в графе замен]]
 +
{{Утверждение
 +
|statement=Пусть [[Двудольные_графы_и_раскраска_в_2_цвета|двудольный граф]] <tex>G</tex> содержит единственное [[Связь_максимального_паросочетания_и_минимального_вершинного_покрытия_в_двудольных_графах#Связь_максимального_паросочетания_и_минимального_вершинного_покрытия_в_двудольном_графе|полное паросочетание]] <tex>M</tex>. Тогда можно упорядочить вершины левой <tex>(a_i \in A)</tex> и правой <tex>(b_i \in B)</tex> долей таким образом, что <tex>\forall j > i : (a_i b_j) \notin G</tex>. При этом рёбра паросочетания будут иметь вид <tex>(a_i b_i)</tex>.
 +
 +
|proof=Индукция по <tex>|A|</tex>.<br/>
 +
* База
 +
*: При <tex>|A|=1</tex> утверждение очевидно. <br/>
 +
* Переход
 +
*: Пусть <tex>|A|=n>1</tex> (для <tex>|A|=n-1</tex> утверждение верно). Возьмем произвольную вершину в левой доли. Будем строить из неё [[Теорема о максимальном паросочетании и дополняющих цепях#Паросочетание в двудольном графе|чередующуюся цепь]], добавляя по очереди ребро, входящее в <tex>M</tex>, и ребро, не входящее в <tex>M</tex>. Заметим, что такой путь не содержит циклов (циклы нечётной длины невозможны, так как граф двудольный, циклы чётной длины отсутствуют из-за единственности паросочетания). Если последнее добавленное ребро не принадлежит <tex>M</tex>, то присоединим к цепи ребро из <tex>M</tex>, инцидентное последней вершине. Значит, построение цепи прервется только при добавлении ребра из <tex>M</tex> при достижении вершины [[Основные определения теории графов#Степень вершины|степени]] <tex>1</tex>. <br/>
 +
Таким образом, последнее ребро в цепи имеет вид <tex>(ab) \in M</tex>, где <tex>a \in A, b \in B, \deg b = 1</tex>. Положим <tex>a_n=a, b_n=b</tex>. Для <tex>G \setminus \{a_n \cup b_n \}</tex> утверждение верно по предположению индукции. С другой стороны, так как <tex>\deg b_n = 1</tex>, то <tex>(a_i b_n) \notin G</tex> при <tex>i<n</tex>, поэтому для <tex>j = n</tex> утверждение также верно.<br/>
 +
}}
 +
 +
 
{{Лемма
 
{{Лемма
 
|about=
 
|about=
о единственном паросочетании графе замен
+
о единственном паросочетании в графе замен
|statement= Дан [[Определение матроида|матроид]] <tex>M = \langle X,I \rangle </tex>. Пусть двудольный граф <tex>G_M(A) = \{ (x, y) | x \in A, y \notin A, A \setminus x \cup y \in I \}</tex> содержит единственное полное паросочетание на <tex>A \oplus B</tex>, где <tex>A\in I</tex> и <tex>|A| = |B|</tex>. Тогда <tex>B \in I</tex>.
+
|statement= Дан [[Определение матроида|матроид]] <tex>M = \langle X,I \rangle </tex>. Пусть двудольный граф <tex>G_M(A) = \{ (x, y) \mid x \in A, y \notin A, A \setminus x \cup y \in I \}</tex> содержит единственное полное паросочетание на <tex>A \oplus B</tex>, где <tex>A\in I</tex> и <tex>|A| = |B|</tex>. Тогда <tex>B \in I</tex>.
 
|proof=  
 
|proof=  
 
[[Файл:Graph replacement.png|thumb|left|160px|]]
 
[[Файл:Graph replacement.png|thumb|left|160px|]]
Заметим, что т. к. в графе <tex>G_M(A)</tex> нет другого паросочетания, то в нем нет циклов четной длины, значит, граф является ациклическим. Упорядочим вершины левой <tex>(y_i \in A \setminus B)</tex> и правой <tex>(z_j \in B \setminus A)</tex> долей таким образом, что <tex>\forall j < i : (y_i z_j) \notin G_M(A)</tex>. Заметим также, что при таком упорядочивании ребра паросочетания имеют вид <tex>(y_i z_i)</tex>. Действительно, ребро в первую вершину правой доли может идти только из первой вершины левой доли. Аналогично во вторую вершину правой доли ведет ребро из второй вершины левой доли и, возможно, ребро из первой вершины, которое уже не может быть использовано в паросочетании и т. д.
+
Упорядочим вершины левой <tex>(y_i \in A \setminus B)</tex> и правой <tex>(z_j \in B \setminus A)</tex> долей таким образом, что <tex>\forall j > i : (y_i z_j) \notin G_M(A)</tex>. При таком упорядочивании ребра паросочетания имеют вид <tex>(y_i z_i)</tex>.
  
Требуется доказать, что <tex>B</tex> независимо. Предположим обратное. Пусть <tex>B \notin I</tex>, тогда существует [[Теорема о циклах|цикл]] <tex>C \subset B</tex>.<br/> Выберем минимальное <tex>i</tex> такое, что <tex>C \subset (A \cap B) \cup \{z_1..z_i\}</tex>. Т. к. <tex>\forall j < i : (y_i z_j) \notin G_M(A)</tex>, то <tex>A \setminus y_i \cup z_j \notin I</tex>, следовательно, <tex>C \setminus z_i \subset \langle A \setminus y_i \rangle </tex>. По [[Оператор замыкания для матроидов#theorem|свойствам замыкания 1 и 3]] получаем:<br/>
+
Требуется доказать, что <tex>B</tex> независимо. Предположим обратное. Пусть <tex>B \notin I</tex>, тогда существует [[Теорема о циклах|цикл]] <tex>C \subset B</tex>.<br/> Выберем минимальное <tex>i</tex> такое, что <tex>z_i \in C</tex>. Так как <tex>\forall j > i : (y_i z_j) \notin G_M(A)</tex>, то <tex>A \setminus y_i \cup z_j \notin I</tex>, следовательно, <tex>C \setminus z_i \subset \langle A \setminus y_i \rangle </tex>. По [[Оператор замыкания для матроидов#theorem|свойствам замыкания 1 и 3]] получаем:<br/>
 
<tex>C \setminus z_i \subset \langle A \setminus y_i \rangle \Rightarrow \langle C \setminus z_i \rangle \subset \langle \langle A \setminus y_i \rangle \rangle \Rightarrow \langle C \setminus z_i \rangle \subset \langle A \setminus y_i \rangle</tex> <br/>
 
<tex>C \setminus z_i \subset \langle A \setminus y_i \rangle \Rightarrow \langle C \setminus z_i \rangle \subset \langle \langle A \setminus y_i \rangle \rangle \Rightarrow \langle C \setminus z_i \rangle \subset \langle A \setminus y_i \rangle</tex> <br/>
Т. к. <tex>z_i \in \langle C \setminus z_i \rangle \subset \langle A \setminus y_i \rangle</tex>, то <tex>A \setminus y_i \cup z_i \notin I</tex>, т. е. в <tex>G_M(A)</tex> не существует ребра <tex>(y_i z_i)</tex>. Но тогда, как было отмечено ранее, не существует полного паросочетания. Получили противоречие.  
+
Так как <tex>z_i \in \langle C \setminus z_i \rangle \subset \langle A \setminus y_i \rangle</tex>, то <tex>A \setminus y_i \cup z_i \notin I</tex>, то есть в <tex>G_M(A)</tex> не существует ребра <tex>(y_i z_i)</tex>. Но тогда, как было отмечено ранее, не существует полного паросочетания. Получили противоречие.
 
}}
 
}}
 +
 +
== Источники информации ==
 +
* [http://www.cs.illinois.edu/class/sp10/cs598csc/Lectures/Lecture16.pdf '''Chandra Chekuri — Combinatorial Optimization], с. 6
 +
 +
[[Категория:Алгоритмы и структуры данных]]
 +
[[Категория:Матроиды]]
 +
[[Категория:Пересечение матроидов]]

Текущая версия на 10:04, 27 апреля 2016

Утверждение:
Пусть двудольный граф [math]G[/math] содержит единственное полное паросочетание [math]M[/math]. Тогда можно упорядочить вершины левой [math](a_i \in A)[/math] и правой [math](b_i \in B)[/math] долей таким образом, что [math]\forall j \gt i : (a_i b_j) \notin G[/math]. При этом рёбра паросочетания будут иметь вид [math](a_i b_i)[/math].
[math]\triangleright[/math]

Индукция по [math]|A|[/math].

  • База
    При [math]|A|=1[/math] утверждение очевидно.
  • Переход
    Пусть [math]|A|=n\gt 1[/math] (для [math]|A|=n-1[/math] утверждение верно). Возьмем произвольную вершину в левой доли. Будем строить из неё чередующуюся цепь, добавляя по очереди ребро, входящее в [math]M[/math], и ребро, не входящее в [math]M[/math]. Заметим, что такой путь не содержит циклов (циклы нечётной длины невозможны, так как граф двудольный, циклы чётной длины отсутствуют из-за единственности паросочетания). Если последнее добавленное ребро не принадлежит [math]M[/math], то присоединим к цепи ребро из [math]M[/math], инцидентное последней вершине. Значит, построение цепи прервется только при добавлении ребра из [math]M[/math] при достижении вершины степени [math]1[/math].
Таким образом, последнее ребро в цепи имеет вид [math](ab) \in M[/math], где [math]a \in A, b \in B, \deg b = 1[/math]. Положим [math]a_n=a, b_n=b[/math]. Для [math]G \setminus \{a_n \cup b_n \}[/math] утверждение верно по предположению индукции. С другой стороны, так как [math]\deg b_n = 1[/math], то [math](a_i b_n) \notin G[/math] при [math]i\lt n[/math], поэтому для [math]j = n[/math] утверждение также верно.
[math]\triangleleft[/math]


Лемма (о единственном паросочетании в графе замен):
Дан матроид [math]M = \langle X,I \rangle [/math]. Пусть двудольный граф [math]G_M(A) = \{ (x, y) \mid x \in A, y \notin A, A \setminus x \cup y \in I \}[/math] содержит единственное полное паросочетание на [math]A \oplus B[/math], где [math]A\in I[/math] и [math]|A| = |B|[/math]. Тогда [math]B \in I[/math].
Доказательство:
[math]\triangleright[/math]
Graph replacement.png

Упорядочим вершины левой [math](y_i \in A \setminus B)[/math] и правой [math](z_j \in B \setminus A)[/math] долей таким образом, что [math]\forall j \gt i : (y_i z_j) \notin G_M(A)[/math]. При таком упорядочивании ребра паросочетания имеют вид [math](y_i z_i)[/math].

Требуется доказать, что [math]B[/math] независимо. Предположим обратное. Пусть [math]B \notin I[/math], тогда существует цикл [math]C \subset B[/math].
Выберем минимальное [math]i[/math] такое, что [math]z_i \in C[/math]. Так как [math]\forall j \gt i : (y_i z_j) \notin G_M(A)[/math], то [math]A \setminus y_i \cup z_j \notin I[/math], следовательно, [math]C \setminus z_i \subset \langle A \setminus y_i \rangle [/math]. По свойствам замыкания 1 и 3 получаем:
[math]C \setminus z_i \subset \langle A \setminus y_i \rangle \Rightarrow \langle C \setminus z_i \rangle \subset \langle \langle A \setminus y_i \rangle \rangle \Rightarrow \langle C \setminus z_i \rangle \subset \langle A \setminus y_i \rangle[/math]

Так как [math]z_i \in \langle C \setminus z_i \rangle \subset \langle A \setminus y_i \rangle[/math], то [math]A \setminus y_i \cup z_i \notin I[/math], то есть в [math]G_M(A)[/math] не существует ребра [math](y_i z_i)[/math]. Но тогда, как было отмечено ранее, не существует полного паросочетания. Получили противоречие.
[math]\triangleleft[/math]

Источники информации