Лемма о единственном паросочетании в графе замен — различия между версиями
DrozdovVA (обсуждение | вклад) |
DrozdovVA (обсуждение | вклад) м |
||
Строка 1: | Строка 1: | ||
{{Утверждение | {{Утверждение | ||
− | |statement=Пусть двудольный граф <tex>G</tex> содержит единственное полное паросочетание <tex>M</tex>. Тогда можо упорядочить вершины левой <tex>(a_i \in A)</tex> и правой <tex>(b_i \in B)</tex> долей таким образом, что <tex>\forall j > i : (a_i b_j) \notin G</tex>. При этом рёбра паросочетания будут иметь вид <tex>( | + | |statement=Пусть двудольный граф <tex>G</tex> содержит единственное полное паросочетание <tex>M</tex>. Тогда можо упорядочить вершины левой <tex>(a_i \in A)</tex> и правой <tex>(b_i \in B)</tex> долей таким образом, что <tex>\forall j > i : (a_i b_j) \notin G</tex>. При этом рёбра паросочетания будут иметь вид <tex>(a_i b_i)</tex>. |
|proof=Индукция по <tex>|A|</tex>.<br/> | |proof=Индукция по <tex>|A|</tex>.<br/> | ||
При <tex>|A|=1</tex> утверждение очевидно. <br/> | При <tex>|A|=1</tex> утверждение очевидно. <br/> | ||
Пусть <tex>|A|=n>1</tex>. Будем строить [[Теорема о максимальном паросочетании и дополняющих цепях#Паросочетание в двудольном графе|чередующуюся цепь]], добавляя по очереди ребро, входящее в <tex>M</tex>, и ребро, не входящее в <tex>M</tex>. Заметим, что в процессе добавления рёбер невозможно попадение в уже посещённую вершину — в противном случае мы получим цикл чётной длины, что противоречит единственности паросочетания. Если последнее добавленное ребро не принадлежит <tex>M</tex>, то присоединим к цепи ребро из <tex>M</tex>, инцидентное последней вершине. Значит, построение цепи прервется только при добавлении ребра из <tex>M</tex> при достижении вершины [[Основные определения теории графов#Степень вершины|степени]] 1. <br/> | Пусть <tex>|A|=n>1</tex>. Будем строить [[Теорема о максимальном паросочетании и дополняющих цепях#Паросочетание в двудольном графе|чередующуюся цепь]], добавляя по очереди ребро, входящее в <tex>M</tex>, и ребро, не входящее в <tex>M</tex>. Заметим, что в процессе добавления рёбер невозможно попадение в уже посещённую вершину — в противном случае мы получим цикл чётной длины, что противоречит единственности паросочетания. Если последнее добавленное ребро не принадлежит <tex>M</tex>, то присоединим к цепи ребро из <tex>M</tex>, инцидентное последней вершине. Значит, построение цепи прервется только при добавлении ребра из <tex>M</tex> при достижении вершины [[Основные определения теории графов#Степень вершины|степени]] 1. <br/> | ||
− | + | Очевидно, что либо первое, либо последнее ребро в цепи имеет вид <tex>(ab) \in M</tex>, где <tex>a \in A, b \in B, \deg b = 1</tex>. Положим <tex>a_n=a, b_n=b</tex>. Для <tex>G \setminus \{a_n \cup b_n \}</tex> утверждение верно по предположению индукции. С другой стороны, т. к. <tex>\deg b_n = 1</tex>, то <tex>(a_i b_n) \notin G</tex> при <tex>i<n</tex>, поэтому для <tex>j = n</tex> утверждение также верно. | |
}} | }} | ||
Версия 04:44, 18 июня 2011
Утверждение: |
Пусть двудольный граф содержит единственное полное паросочетание . Тогда можо упорядочить вершины левой и правой долей таким образом, что . При этом рёбра паросочетания будут иметь вид . |
Индукция по |
Лемма (о единственном паросочетании графе замен): |
Дан матроид . Пусть двудольный граф содержит единственное полное паросочетание на , где и . Тогда . |
Доказательство: |
Упорядочим вершины левой и правой долей таким образом, что . При таком упорядочивании ребра паросочетания имеют вид .Требуется доказать, что цикл . |
Источник
Chandra Chekuri — Combinatorial Optimization, с. 6