Граф замен — различия между версиями
Shevchen (обсуждение | вклад) м |
Shevchen (обсуждение | вклад) м |
||
Строка 13: | Строка 13: | ||
Пусть <tex>X_1 = \{z \in S \setminus I | I \cup z \in I_1 \}, X_2 = \{z \in S \setminus I | I \cup z \in I_2 \}, P</tex> - кратчайший путь в <tex>D</tex> из <tex>X_1</tex> в <tex>X_2</tex>. Тогда [[Алгоритм построения базы в пересечении матроидов|алгоритм]] с помощью этого пути либо определяет максимальность набора <tex>I</tex>, либо позволяет найти набор большей мощности. | Пусть <tex>X_1 = \{z \in S \setminus I | I \cup z \in I_1 \}, X_2 = \{z \in S \setminus I | I \cup z \in I_2 \}, P</tex> - кратчайший путь в <tex>D</tex> из <tex>X_1</tex> в <tex>X_2</tex>. Тогда [[Алгоритм построения базы в пересечении матроидов|алгоритм]] с помощью этого пути либо определяет максимальность набора <tex>I</tex>, либо позволяет найти набор большей мощности. | ||
}} | }} | ||
+ | |||
+ | == Источник == | ||
+ | ''Chandra Chekuri'' — [http://www.cs.illinois.edu/class/sp10/cs598csc/Lectures/Lecture17.pdf '''Combinatorial Optimization'''], с. 2-3. |
Версия 23:58, 25 июня 2011
Теорема: |
Пусть матроиды с ранговыми функциями и , соответственно. Тогда максимальная мощность множества из равна . и - |
Доказательство: |
Пусть . Следовательно, верно . Тогда, из определения ранга, .В другую сторону докажем теорему алгоритмически. На каждом этапе алгоритм получает и либо заключает, что множества большей мощности из получить невозможно, либо возвращает .Введем двудольный ориентированный граф замен для и - граф . Левой долей являются элементы текущего множества , правой - все остальные элементы . Проведем ребра , а также . Пусть - кратчайший путь в из в . Тогда алгоритм с помощью этого пути либо определяет максимальность набора , либо позволяет найти набор большей мощности. |
Источник
Chandra Chekuri — Combinatorial Optimization, с. 2-3.