Алгоритм Фарака-Колтона и Бендера — различия между версиями
Kirelagin (обсуждение | вклад) |
(→Минимум внутри блока) |
||
| Строка 23: | Строка 23: | ||
{{Утверждение | {{Утверждение | ||
|id=sameblocks | |id=sameblocks | ||
| − | |statement=Если две последовательности <tex>x_i</tex> и <tex>y_i</tex> таковы, что все их элементы на соответствующих позициях различаются на одну и ту же константу (т.е. <tex>\forall k: x_k = y_k + C</tex>), то любой запрос RMQ даст один и тот же ответ для обеих последовательностей. | + | |statement=Если две последовательности <tex>x_i</tex> и <tex>y_i</tex> таковы, что все их элементы на соответствующих позициях различаются на одну и ту же константу (т.е. <tex>\forall k: x_k = y_k + C</tex>), то любой запрос RMQ даст один и тот же ответ для обеих последовательностей. |
}} | }} | ||
Версия 03:25, 27 июня 2011
Алгоритм Фарака-Колтона, Бендера (алгоритм Фарах-Колтона, Бендера) — применяется для решения за времени специального случая задачи RMQ (поиск минимума на отрезке), в котором соседние элементы входной последовательности различаются на ±1. Может быть использован также для решения задачи LCA.
Вход: последовательность длины , соседние элементы которой отличаются на ±1.
Выход: ответы на онлайн запросы вида «позиция минимума на отрезке ».
Алгоритм
Данный алгоритм основывается на методе решения задачи RMQ с помощью разреженной таблицы (sparse table, ST) за .
Чтобы избавиться от логарифма используется предподсчёт ответа для небольших подстрок входной последовательности. Разделим последовательность на блоки длины . Для каждого блока вычислим минимум на нём и определим как позицию минимального элемента в -том блоке.
На новой последовательности построим разреженную таблицу. Теперь для ответа на запрос RMQ, если и находятся в разных блоках, нам необходимо вычислить следующее:
- минимум на отрезке от до конца содержащего блока;
- минимум по всем блокам, находящимся между блоками, содержащими и ;
- минимум от начала блока, содержащего , до .
Ответом на запрос будет позиция меньшего из эти трёх элементов.
Второй элемент мы уже умеем находить за с помощью и ST. Осталось научиться находить минимум по отрезку, границы которого не совпадают с границами блоков.
Минимум внутри блока
| Утверждение: |
Если две последовательности и таковы, что все их элементы на соответствующих позициях различаются на одну и ту же константу (т.е. ), то любой запрос RMQ даст один и тот же ответ для обеих последовательностей. |
Таким образом, мы можем нормализовать блок, вычтя из всех его элементов первый. Тем самым мы значительно уменьшим число возможных типов блоков.
| Утверждение: |
Существует различных типов нормализованных блоков. |
| Соседние элементы в блоках отличаются на ±1. Первый элемент в нормализованном блоке всегда равен нулю. Таким образом, каждый нормализованный блок может быть представлен ±1-вектором длины . Таких векторов . |
Осталось создать таблиц — по одной для каждого типа блока. В такую таблицу необходимо занести предподсчитанные ответы на все возможные запросы минимума внутри блока соответствующего типа, коих . Для каждого блока в необходимо заранее вычислить его тип. Таким образом мы получили возможность отвечать на запрос минимума по любой части блока за , затратив на предподсчёт времени.
Результат
Итого, на предподсчёт требуется времени и памяти, а ответ на запрос вычисляется за .
См. также
- Решение RMQ с помощью разреженной таблицы
- Сведение задачи RMQ к задаче LCA
- Сведение задачи LCA к задаче RMQ
Ссылки
- M. A. Bender and M. Farach-Colton. “The LCA Problem Revisited” LATIN, pages 88-94, 2000