Класс IP — различия между версиями
(→Определение) |
(→Теорема) |
||
Строка 13: | Строка 13: | ||
==Теорема== | ==Теорема== | ||
− | + | '''NP ⊂ IP[1]''', '''BPP ⊂ IP[0]''' | |
+ | |||
==Доказательство== | ==Доказательство== | ||
Первое утверждение верно, так как определить, принадлежит ли слово языку, можно за один запрос. <tex>V</tex> посылает запрос к <tex>P</tex> и в ответ получает сертификат, если слово принадлежит языку. Если слово не принадлежит языку, то сертификата не существует, а значит <tex>P</tex> не может его послать. <tex>P</tex> хочет убедить <tex>V</tex> в том, что слово принадлежит языку, поэтому пришлет сертификат в случае его существования. | Первое утверждение верно, так как определить, принадлежит ли слово языку, можно за один запрос. <tex>V</tex> посылает запрос к <tex>P</tex> и в ответ получает сертификат, если слово принадлежит языку. Если слово не принадлежит языку, то сертификата не существует, а значит <tex>P</tex> не может его послать. <tex>P</tex> хочет убедить <tex>V</tex> в том, что слово принадлежит языку, поэтому пришлет сертификат в случае его существования. |
Версия 16:36, 6 мая 2010
Определение
Интерактивный протокол доказательства - абстрактная машина, модулирующая вычисление как передачу сообщений между двумя сущностями: вероятностная машина Тьюринга, работающая за полином и проверяющая информацию от . При этом не видит вероятностную ленту . хочет допустить слово тогда и только тогда, когда оно принадлежит языку.
- prover и - verifier. В ходе данного взаимодействия и определяют, принадлежит ли данное слово языку. имеет неограниченную вычислительную мощность и пытается доказать, что принадлежит языку. -Определение
Классом
(IP = interactive proof) называется множество языков, распознаваемых с помощью интерактивного протокола доказательства. При этом:1)
, где - вероятность того, что убедит допуститить2)
3) количество обращений к
Теорема
NP ⊂ IP[1], BPP ⊂ IP[0]
Доказательство
Первое утверждение верно, так как определить, принадлежит ли слово языку, можно за один запрос.
посылает запрос к и в ответ получает сертификат, если слово принадлежит языку. Если слово не принадлежит языку, то сертификата не существует, а значит не может его послать. хочет убедить в том, что слово принадлежит языку, поэтому пришлет сертификат в случае его существования.Второе утверждение очевидно, так как для проверки принадлежности слова к языку из BPP хватает вычислительной мощности , и запросов к делать не нужно.
Замечание
На самом деле
, где - аналог , за исключением того, что из - детерминированная машина Тьюринга.Определение
- класс языков, распознаваемых с помощью интерактивного протокола доказательства с полиномиальным числом запросов от к .