Мера на полукольце множеств — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 29: Строка 29:
 
2) Для <tex> A \in \mathbb R </tex> и <tex> A_1, A_2, \ldots, A_n, \ldots \in \mathcal R, A \subset \bigcup\limits_{n} A_n </tex> выполняется <tex> m(A) \le \sum\limits_{n} m(A_n) </tex> (сигма-полуаддитивность)
 
2) Для <tex> A \in \mathbb R </tex> и <tex> A_1, A_2, \ldots, A_n, \ldots \in \mathcal R, A \subset \bigcup\limits_{n} A_n </tex> выполняется <tex> m(A) \le \sum\limits_{n} m(A_n) </tex> (сигма-полуаддитивность)
  
 +
|proof=
 +
1) Пусть <tex> A \setminus\bigcup\limits_{n=1}^{N} A_n = \bigcup\limits_{p} D_p  </tex>, тогда <tex> A = \bigcup\limits_{n=1}^{N} A_n \cup \bigcup\limits_{p} D_p  </tex>.
 
}}
 
}}
 
[[Полукольца и алгебры|<<]] [[Математический_анализ_1_курс#.D0.93.D0.BB.D0.B0.D0.B2.D0.B0_V_.D0.A0.D1.8F.D0.B4.D1.8B|>>]]
 
[[Полукольца и алгебры|<<]] [[Математический_анализ_1_курс#.D0.93.D0.BB.D0.B0.D0.B2.D0.B0_V_.D0.A0.D1.8F.D0.B4.D1.8B|>>]]
  
 
[[Категория:Математический анализ 2 курс]]
 
[[Категория:Математический анализ 2 курс]]

Версия 23:58, 26 сентября 2011

<< >>


Определение:
Пусть [math] (X, \mathcal R) [/math] - полукольцо. [math] m: \mathcal R \rightarrow \overline{\mathbb R_{+}}[/math] называется мерой на нем, если:

1) [math] m(\varnothing) = 0 [/math]

2) Для дизъюнктных [math] A_1, A_2, \ldots, A_n, \ldots \in \mathcal R [/math] и [math] A \in \mathcal R [/math], такого, что [math] A = \bigcup\limits_{n} A_n [/math], [math] m(A) = \sum\limits_n m(A_n) [/math] (сигма-аддитивность)


Примеры мер:

  • [math] \mathcal R = 2^X, m(\varnothing) = 0, m(A) = +\infty [/math];
  • [math] X = \mathbb N, \mathcal R = 2^X, m(X) = \sum\limits_{n=1}^{+\infty} P_k [/math] - сходящийся положительный ряд, [math] m(\varnothing) = 0 [/math], для [math] A = \{i_1, i_2, \ldots, i_n\} [/math] полагаем [math] m(A) = \sum\limits_{k \in A} P_k [/math];
  • Для полукольца ячеек примером меры является [math] m(A) = b - a [/math], где [math] A = [a; b) [/math] - длина ячейки;

То, что длина ячейки является корректно определенной мерой — нетривиальный факт, который будет доказан нами позднее.

Выведем 2 важных свойства меры на полукольце:

Лемма:
Пусть [math] m [/math] — мера на полукольце [math] \mathcal R [/math], тогда:

1) Для [math] A \in \mathbb R [/math] и дизъюнктных [math] A_1, A_2, \ldots, A_n, \ldots \in \mathcal R, \bigcup\limits_{n} A_n \subset A [/math] выполняется [math] \sum\limits_{n} m(A_n) \le m(A) [/math]

2) Для [math] A \in \mathbb R [/math] и [math] A_1, A_2, \ldots, A_n, \ldots \in \mathcal R, A \subset \bigcup\limits_{n} A_n [/math] выполняется [math] m(A) \le \sum\limits_{n} m(A_n) [/math] (сигма-полуаддитивность)
Доказательство:
[math]\triangleright[/math]
1) Пусть [math] A \setminus\bigcup\limits_{n=1}^{N} A_n = \bigcup\limits_{p} D_p [/math], тогда [math] A = \bigcup\limits_{n=1}^{N} A_n \cup \bigcup\limits_{p} D_p [/math].
[math]\triangleleft[/math]

<< >>