Граф замен — различия между версиями
(Нормальная картинка графа замен) |
|||
Строка 1: | Строка 1: | ||
+ | [[Файл:Graph_DY.png|250px|thumb|right|Граф замен <tex>D_{M_1, M_2}(I)</tex>]] | ||
+ | |||
'''Граф замен''' — специальный ориентированный двудольный граф, фигурирующий в [[Теорема Эдмондса-Лоулера|теореме Эдмондса-Лоулера]]. | '''Граф замен''' — специальный ориентированный двудольный граф, фигурирующий в [[Теорема Эдмондса-Лоулера|теореме Эдмондса-Лоулера]]. | ||
− | |||
− | |||
Пусть <tex>I</tex> — текущее независимое множество, построенное [[Алгоритм построения базы в пересечении матроидов|алгоритмом]] для матроидов <tex>M_1 = \langle S, I_1 \rangle</tex>, <tex>M_2 = \langle S, I_2 \rangle</tex>. Введем граф замен <tex>D_{M_1, M_2}(I)</tex>, левой долей которого являются элементы множества <tex>I</tex>, правой — все остальные элементы <tex>S</tex>. Проведем все имеющиеся ребра | Пусть <tex>I</tex> — текущее независимое множество, построенное [[Алгоритм построения базы в пересечении матроидов|алгоритмом]] для матроидов <tex>M_1 = \langle S, I_1 \rangle</tex>, <tex>M_2 = \langle S, I_2 \rangle</tex>. Введем граф замен <tex>D_{M_1, M_2}(I)</tex>, левой долей которого являются элементы множества <tex>I</tex>, правой — все остальные элементы <tex>S</tex>. Проведем все имеющиеся ребра |
Версия 14:56, 12 июня 2015
Граф замен — специальный ориентированный двудольный граф, фигурирующий в теореме Эдмондса-Лоулера.
Пусть алгоритмом для матроидов , . Введем граф замен , левой долей которого являются элементы множества , правой — все остальные элементы . Проведем все имеющиеся ребра
— текущее независимое множество, построенное,
а также
.
Пусть алгоритм с помощью этого пути либо определяет максимальность набора , либо позволяет найти набор большей мощности.
— кратчайший путь в из в . ТогдаИсточник
Chandra Chekuri — Combinatorial Optimization, с. 2-3.