Пороговая функция — различия между версиями
Warrior (обсуждение | вклад) |
Rybak (обсуждение | вклад) |
||
Строка 5: | Строка 5: | ||
Обычно пороговую функцию записывают в следующим виде: <tex>f = [a_1,a_2,a_3,...,a_n;T]</tex>. | Обычно пороговую функцию записывают в следующим виде: <tex>f = [a_1,a_2,a_3,...,a_n;T]</tex>. | ||
− | + | ||
− | + | ||
+ | === Пример === | ||
+ | |||
+ | Рассмотрим функцию трёх аргументов <tex>f(A_1,A_2,A_3)=[3,4,6;5]</tex>. | ||
Согласно этой записи имеем | Согласно этой записи имеем | ||
:<tex>a_1=3; a_2=4; a_3=6; T=5</tex>. | :<tex>a_1=3; a_2=4; a_3=6; T=5</tex>. |
Версия 03:54, 12 октября 2011
Определение: |
Булева функция | называется пороговой, если ее можно представить в виде , где — вес аргумента , а — порог функции ;
Обычно пороговую функцию записывают в следующим виде: .
Пример
Рассмотрим функцию трёх аргументов
. Согласно этой записи имеем- .
Все наборы значений аргументов
на которых функция принимает единичное (либо нулевое) значение, можно получить из соотношения вида .- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
- Если , то .
Таким образом, заданная функция принимает единичное значение на наборах 001, 011, 101, 110, 111. Её минимальная форма имеет вид
- .
Для всякой пороговой функции справедливо
- ,
где k — положительное вещественное число. Чтобы убедиться в этом достаточно записать
и разделить обе части неравенства на
.Пример непороговой функции
Примером непороговой функции может служить Сложение по модулю 2 (
).При аргументах
значение функции равно 0. Тогда, по определению пороговой функции должно выполняться неравенство . Подставляя значение аргументов, получаем, что . При аргументах и значение функции равно 1. Тогда, по определению выполняется неравенство , подставляя в которое значения соответствующих аргументов, получаем . Отсюда следует, что и . Но это неравенстово не выполняется при аргументах . Значит, функция непороговая.