Теорема Менгера — различия между версиями
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
− | Теорема Менгера представляет собой группу теорем, связывающих такие понятия на графах как ''k-связность'' и ''количество непересекающихся путей'' относительно двух выделенных вершин. Возникают различные варианты очень похожих друг на друга по формулировке теорем в зависимости от того, рассматриваем ли мы ситуацию в ''ориентированном'' или ''неориентированном'' графе, и подразумеваем ли ''реберную связность'' и ''реберно непересекающиеся пути'' или же ''вершинную связность'' и ''вершинно непересекающиеся пути''. | + | Теорема Менгера представляет собой группу теорем, связывающих такие понятия на графах как ''k-связность'' и ''количество непересекающихся путей'' относительно двух выделенных вершин. Возникают различные варианты очень похожих друг на друга по формулировке теорем в зависимости от того, рассматриваем ли мы ситуацию в ''ориентированном'' или ''неориентированном'' графе, и подразумеваем ли ''реберную k-связность'' и ''реберно непересекающиеся пути'' или же ''вершинную k-связность'' и ''вершинно непересекающиеся пути''. |
==Подготовка к доказательству== | ==Подготовка к доказательству== | ||
Строка 34: | Строка 34: | ||
<= | <= | ||
Тогда существует максимальный поток, целочисленный на каждом ребре(по лемме). | Тогда существует максимальный поток, целочисленный на каждом ребре(по лемме). | ||
− | По теореме Форда-Фалкерсона для такого потока существует разрез с пропускной способностью равной потоку (и этот разрез минимален среди всех возможных разрезов). По условию "после удаления <tex>\forall L-1</tex> (и в частности тех, что находятся в нашем разрезе) ребер все еще<tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>", значит пропускная способность разреза <tex>\geqslant L = |f|</tex>. А | + | По теореме Форда-Фалкерсона для такого потока существует разрез с пропускной способностью равной потоку (и этот разрез минимален среди всех возможных разрезов). По условию "после удаления <tex>\forall L-1</tex> (и в частности тех, что находятся в нашем разрезе) ребер все еще<tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>", значит пропускная способность разреза <tex>\geqslant L = |f|</tex>. А так как поток целочисленный, то это и означает, что <tex>\exists L</tex> реберно непересекающихся путей (чуть позже дадим аккуратное объяснение этому). |
=> | => | ||
<tex>\exists L</tex> реберно непересекающихся путей, а значит удалив любых <tex>L-1</tex> ребер хотя бы один путь останется останется не тронутым (принцип Дирихле). Это и означает <tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>. | <tex>\exists L</tex> реберно непересекающихся путей, а значит удалив любых <tex>L-1</tex> ребер хотя бы один путь останется останется не тронутым (принцип Дирихле). Это и означает <tex>\exists</tex> путь из <tex>u</tex> в <tex>v</tex>. | ||
}} | }} | ||
+ | |||
+ | Небольшой комментарий к доказательству <= : | ||
+ | Если в сети, где все пропускные способности равны 1 существует целочисленный поток величиной <tex>L</tex> то существует и <tex>L</tex> реберно непересекающихся путей. Поясним это: найдем какой-нибудь маршрут из <tex>u</tex> в <tex>v</tex> лежащий только на ребрах где поток равен 1. Такой маршут обязательно существуеют, пока величина потока больше 0 (нетрудно показать, что иначе придем к противоречию). Удалив все ребра находящиеся в этом маршруте и оставив все остальное неизменным, придем к потоку величиной <tex>L-1</tex>. Ясно, что таким образом мы неизбежно выделим <tex>L</tex> реберно непересекающихся маршрутов, что и требуется. | ||
+ | |||
+ | //все остальные теоремы | ||
+ | |||
+ | ==Смотри также== | ||
+ | *[[Теорема Менгера, альтернативное доказательство]] | ||
==Литература== | ==Литература== | ||
* Ловас Л., Пламмер М. '''Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии''' 1998. 656 с. ISBN 5-03-002517-0 (глава 2.4 стр. 117) | * Ловас Л., Пламмер М. '''Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии''' 1998. 656 с. ISBN 5-03-002517-0 (глава 2.4 стр. 117) | ||
[[Категория:Связность в графах]] | [[Категория:Связность в графах]] |
Версия 09:38, 22 октября 2011
Теорема Менгера представляет собой группу теорем, связывающих такие понятия на графах как k-связность и количество непересекающихся путей относительно двух выделенных вершин. Возникают различные варианты очень похожих друг на друга по формулировке теорем в зависимости от того, рассматриваем ли мы ситуацию в ориентированном или неориентированном графе, и подразумеваем ли реберную k-связность и реберно непересекающиеся пути или же вершинную k-связность и вершинно непересекающиеся пути.
Подготовка к доказательству
Для доказательства мы будем пользоваться развитой раннее теорией потоков. Кроме базовых определений нам потребуется понятие остаточной сети (иначе - дополнительной сети), а также теорема Форда-Фалкерсона.
//что-то про разрез .. Разрез, лемма о потоке через разрез
Кроме того потребуется лемма о целочисленности потока, которую сейчас и докажем:
Лемма (о целочисленности потока): |
Если пропускные способности всех ребер целочисленные (сеть целочислена), то существует максимальный поток, целочисленный на каждом ребре. |
Доказательство: |
|
Теорема
Теперь сама теорема будет тривиальным следствием. В начале сформулируем и докажем реберную версию для случая ориентированного графа.
Теорема (Менгера о реберной двойственности в ориентированном графе): |
Между вершинами и реберно непересекающихся путей после удаления ребер путь из в . |
Доказательство: |
Назначим каждому ребру пропускную способность 1. <= Тогда существует максимальный поток, целочисленный на каждом ребре(по лемме). По теореме Форда-Фалкерсона для такого потока существует разрез с пропускной способностью равной потоку (и этот разрез минимален среди всех возможных разрезов). По условию "после удаления (и в частности тех, что находятся в нашем разрезе) ребер все еще путь из в ", значит пропускная способность разреза . А так как поток целочисленный, то это и означает, что реберно непересекающихся путей (чуть позже дадим аккуратное объяснение этому).=> реберно непересекающихся путей, а значит удалив любых ребер хотя бы один путь останется останется не тронутым (принцип Дирихле). Это и означает путь из в . |
Небольшой комментарий к доказательству <= : Если в сети, где все пропускные способности равны 1 существует целочисленный поток величиной
то существует и реберно непересекающихся путей. Поясним это: найдем какой-нибудь маршрут из в лежащий только на ребрах где поток равен 1. Такой маршут обязательно существуеют, пока величина потока больше 0 (нетрудно показать, что иначе придем к противоречию). Удалив все ребра находящиеся в этом маршруте и оставив все остальное неизменным, придем к потоку величиной . Ясно, что таким образом мы неизбежно выделим реберно непересекающихся маршрутов, что и требуется.//все остальные теоремы
Смотри также
Литература
- Ловас Л., Пламмер М. Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии 1998. 656 с. ISBN 5-03-002517-0 (глава 2.4 стр. 117)