Основные определения теории графов — различия между версиями
Baev.dm (обсуждение | вклад) |
Baev.dm (обсуждение | вклад) |
||
Строка 24: | Строка 24: | ||
}} | }} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
Строка 37: | Строка 29: | ||
}} | }} | ||
− | |||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition = | |definition = | ||
Строка 45: | Строка 34: | ||
}} | }} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition = | |definition = |
Версия 02:45, 26 октября 2011
Эта статья находится в разработке!
Ориентированные графы (directed graph)
Определение: |
Ориентированным графом | называется пара , где - конечное множество вершин, а - множество рёбер.
Есть еще более другое определение. Ориентированным графом
называется четверка , где , а и - некоторые абстрактные множества. Иногда граф, построенный таким образом называют мультиграфом. В мультиграфе не допускаются петли (см. определение ниже), но пары вершин допускается соединять более чем одним ребром. Такие ребра называются кратными (иначе - параллельные).
Определение: |
Ребром (дугой) ориентированного графа называют упорядоченную пару вершин | .
В ориентированном графе ребро, концы которого совпадают, то есть , называется петлей. Мультиграф с петлями принято называть псевдографом.
Если имеется ребро , то иногда говорят, что - родитель . Также вершины и называют смежными. Граф с вершинами и ребрами называют - графом. - граф называют тривиальным.
Определение: |
Полустепенью входа вершины Аналогично, полустепенью выхода вершины называется число рёбер, выходящих из этой вершины, и обозначается . | называется число рёбер, входящих в эту вершину, и обозначается .
Определение: |
Путём в графе называется последовательность вида | , где .
Определение: |
Циклическим путём называется путь, в котором | .
Определение: |
Цикл - это класс эквивалентности циклических путей на отношении эквивалентности таком, что два пути эквивалентны, если | ; где и - это две последовательности ребер в циклическом пути.