Неравенство Макмиллана — различия между версиями
Krotser (обсуждение | вклад) (→Необходимые определения) |
Krotser (обсуждение | вклад) (→Неравенство Макмиллана) |
||
Строка 15: | Строка 15: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | <tex> \sum\limits_{i = 1}^{|A|} 2^{-l_i} \le 1</tex> (где <tex>l_i</tex> {{---}} длины кодовых слов) выполняется | + | <tex> \sum\limits_{i = 1}^{|A|} 2^{-l_i} \le 1</tex> (где <tex>l_i</tex> {{---}} длины кодовых слов) выполняется для любого однозначно декодируемого кода. |
|proof= | |proof= | ||
− | + | Докажем теорему способом, приведенным А. Шенем. | |
+ | |||
Пусть имеется однозначный код с <tex>k</tex> кодовыми словами <tex>P_1,P_2, ..., P_k</tex>. Необходимо доказать, что их длины <tex>n_i=|P_i|</tex> удовлетворяют неравенству Крафта{{---}}Макмиллана. | Пусть имеется однозначный код с <tex>k</tex> кодовыми словами <tex>P_1,P_2, ..., P_k</tex>. Необходимо доказать, что их длины <tex>n_i=|P_i|</tex> удовлетворяют неравенству Крафта{{---}}Макмиллана. | ||
− | + | Так как нет разницы из чего составлять коды, то вместо нулей и единиц будем использовать <tex>a</tex> и <tex>b</tex>. Запишем формально сумму всех кодовых слов как алгебраическое выражение <tex>P_1+P_2+...P_k</tex> (многочлен от <tex>a</tex> и <tex>b</tex>, в котором одночлены записаны как произведения переменных <tex>a</tex> и <tex>b</tex>, без возведения в степень). Теперь (ещё более странное на первый взгляд действие) возведём это в степень <tex>N</tex> (произвольное натуральное число) и раскроем скобки, сохраняя порядок переменных (не собирая вместе одинаковые переменные) в одночленах: <tex>(P_1+P_2+...P_k)^N=</tex> сумма одночленов. | |
Например, для кода со словами <tex>0,10,11</tex> (которые теперь записываются как <tex>a,ba,bb</tex>) и для <tex>N=2</tex> получаем <tex>(a+ba+bb)^2</tex><tex>=</tex> | Например, для кода со словами <tex>0,10,11</tex> (которые теперь записываются как <tex>a,ba,bb</tex>) и для <tex>N=2</tex> получаем <tex>(a+ba+bb)^2</tex><tex>=</tex> | ||
− | <tex>=(a+ba+bb)\times{(a+ba+bb)}=aa+aba+abb+baa+baba+babb+bba+bbba+bbbb.</tex> | + | <tex>=(a+ba+bb)\times{(a+ba+bb)}=aa+aba+abb+baa+baba+babb+bba+bbba+bbbb.</tex> Не случайно в этом примере все одночлены в правой части различны (если не переставлять переменные): так будет для любого однозначно декодируемого кода, ведь по определению однозначности никакое слово не может быть получено двумя способами при соединении кодовых слов. |
− | + | Далее подставим <tex>a=b=\frac{1}{2}</tex> в наше неравенство (если оно верно для букв, то оно верно и для любых их числовых значений). Слева получится <tex>(2^{-n_1}+2^{-n_2}+...+2^{-n_i})^N</tex> (выражение из неравенства Крафта{{---}}Макмиллана). Оценим правую часть сверху, сгруппировав слова по длинам: имеется не более <tex>2^l</tex> слагаемых длины <tex>l</tex>, каждое из которых равно <tex>2^{-l}</tex>, и потому слагаемые данной длины в сумме не превосходят единицы, а правая часть не превосходит максимальной длины слагаемых, то есть <tex>N\times{\max(n_i)}</tex>. Получаем, что <tex>(2^{-n_1}+2^{-n_2}+...+2^{-n_i})^N<N\times{\max(n_i)}</tex> и это верно при любом <tex>N</tex>. Если основание степени в левой части больше единицы, то при больших <tex>N</tex> это неравенство нарушится (показательная функция растет быстрее линейной). Поэтому, для однозначного кода выполняется неравенство Крафта{{---}}Макмиллана. | |
}} | }} | ||
Версия 05:38, 15 декабря 2011
Необходимые определения
Определение: |
Пусть заданы два произвольных конечных множества, которые называются, соответственно, кодируемым алфавитом и кодирующим алфавитом. Их элементы называются символами, а строки (последовательности конечной длины) символов — словами. Длина слова — это число символов, из которого оно состоит. |
В качестве кодирующего алфавита часто рассматривается множество
— так называемый двоичный или бинарный алфавит.
Определение: |
Кодом для алфавита | называется функция , которая для каждого символа из указывает слово , кодирующее этот символ.
Определение: |
Код называется однозначным, если никаким двум словам кодируемого алфавита не может быть сопоставлен один и тот же код. |
Неравенство Макмиллана
Теорема: |
(где — длины кодовых слов) выполняется для любого однозначно декодируемого кода. |
Доказательство: |
Докажем теорему способом, приведенным А. Шенем. Пусть имеется однозначный код с кодовыми словами . Необходимо доказать, что их длины удовлетворяют неравенству Крафта—Макмиллана.Так как нет разницы из чего составлять коды, то вместо нулей и единиц будем использовать и . Запишем формально сумму всех кодовых слов как алгебраическое выражение (многочлен от и , в котором одночлены записаны как произведения переменных и , без возведения в степень). Теперь (ещё более странное на первый взгляд действие) возведём это в степень (произвольное натуральное число) и раскроем скобки, сохраняя порядок переменных (не собирая вместе одинаковые переменные) в одночленах: сумма одночленов.Например, для кода со словами (которые теперь записываются как ) и для получаемДалее подставим Не случайно в этом примере все одночлены в правой части различны (если не переставлять переменные): так будет для любого однозначно декодируемого кода, ведь по определению однозначности никакое слово не может быть получено двумя способами при соединении кодовых слов. в наше неравенство (если оно верно для букв, то оно верно и для любых их числовых значений). Слева получится (выражение из неравенства Крафта—Макмиллана). Оценим правую часть сверху, сгруппировав слова по длинам: имеется не более слагаемых длины , каждое из которых равно , и потому слагаемые данной длины в сумме не превосходят единицы, а правая часть не превосходит максимальной длины слагаемых, то есть . Получаем, что и это верно при любом . Если основание степени в левой части больше единицы, то при больших это неравенство нарушится (показательная функция растет быстрее линейной). Поэтому, для однозначного кода выполняется неравенство Крафта—Макмиллана. |
Ссылки
Литература
Шень А. Х. Программирование: теоремы и задачи. — М.: МЦНМО, 2011. С. 206 - 210. ISBN 978-5-94057-696-9