Граф блоков-точек сочленения — различия между версиями
Creep (обсуждение | вклад) |
Creep (обсуждение | вклад) |
||
Строка 13: | Строка 13: | ||
Достаточно показать, что в <tex>T</tex> нет циклов. | Достаточно показать, что в <tex>T</tex> нет циклов. | ||
Пусть <tex>A_i, a_k, A_j: a_k \in A_i, A_j</tex> - последовательные вершины <tex>T</tex>, лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая <tex>A_i</tex> и <tex>A_j</tex> и не содержащая <tex>a_k</tex>. По ней можно проложить путь в <tex>G</tex> (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине <tex>a_k</tex>, получив цикл, что противоречит тому, что <tex>a_k</tex> - точка сочленения. | Пусть <tex>A_i, a_k, A_j: a_k \in A_i, A_j</tex> - последовательные вершины <tex>T</tex>, лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая <tex>A_i</tex> и <tex>A_j</tex> и не содержащая <tex>a_k</tex>. По ней можно проложить путь в <tex>G</tex> (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине <tex>a_k</tex>, получив цикл, что противоречит тому, что <tex>a_k</tex> - точка сочленения. | ||
− | |||
}} | }} | ||
==Литература== | ==Литература== |
Версия 13:53, 31 октября 2011
Определение: |
Пусть граф связен. Обозначим - блоки, а - точки сочленения . Построим двудольный граф , поместив и в различные его доли. Если точка сочленения принадлежит блоку, проведем между ними ребро. Полученный граф называют графом блоков-точек сочленения графа . |
Лемма: |
В определении, приведенном выше, - дерево. |
Доказательство: |
Достаточно показать, что в Пусть нет циклов. - последовательные вершины , лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая и и не содержащая . По ней можно проложить путь в (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине , получив цикл, что противоречит тому, что - точка сочленения. |
Литература
М.О.Асанов, В.А.Баранский, В.В.Расин ДИСКРЕТНАЯ МАТЕМАТИКА: ГРАФЫ МАТРОИДЫ, АЛГОРИТМЫ