Коды Грея для перестановок — различия между версиями
Lirik (обсуждение | вклад) |
Lirik (обсуждение | вклад) |
||
Строка 42: | Строка 42: | ||
== '''Определение''' == | == '''Определение''' == | ||
− | '''Коды Грея для перестановок''' {{---}} | + | '''Коды Грея для перестановок''' {{---}} упорядочение перестановок, при котором соседние перестановки отличаются только элементарной транспозицией. |
− | '''Элементарная транспозиция''' {{---}} транспозиция двух соседних элементов | + | '''Элементарная транспозиция''' {{---}} транспозиция двух соседних элементов. Далее будем называть элементарную транспозицию просто транспозицией. |
== '''Построения кода Грея для перестановок''' == | == '''Построения кода Грея для перестановок''' == | ||
Строка 51: | Строка 51: | ||
Для $n = 1$ код Грея выглядит так: | Для $n = 1$ код Грея выглядит так: | ||
− | + | $\{ 1 \}$ {{---}} $n!$ различных перестановок, отличных друг от друга в одной транспозиции (очевидно). | |
− | { | ||
− | |||
Будем строить код Грея для перестановок длины $n = k$. Предположим, что нам известен код Грея для перестановок длиной $n = k - 1$. Возьмем первую перестановку из известного нам кода. Пусть она выглядит так: | Будем строить код Грея для перестановок длины $n = k$. Предположим, что нам известен код Грея для перестановок длиной $n = k - 1$. Возьмем первую перестановку из известного нам кода. Пусть она выглядит так: | ||
− | + | $\{a_{1}, a_{2}, a_{3}, ..., a_{k-1}\}$ ,где $a_{i}$ при $i = 1, 2, 3, ..., k$ {{---}} элементы перестановки. | |
− | { | ||
− | |||
Элемент $a_{k}$ запишем в начало этой перестановки: | Элемент $a_{k}$ запишем в начало этой перестановки: | ||
− | + | $\{a_{k}, a_{1}, a_{2}, a_{3}, ..., a_{k - 1}\}$ | |
− | { | ||
− | |||
Будем "двигать" этот элемент $a_{k}$ влево, меняя его с соседним: | Будем "двигать" этот элемент $a_{k}$ влево, меняя его с соседним: | ||
+ | $\{a_{k}, a_{1}, a_{2}, a_{3}, ..., a_{k - 1}\}$ (1) | ||
− | { | + | $\{a_{1}, a_{k}, a_{2}, a_{3}, ..., a_{k - 1}\}$ (2) |
− | { | + | $\{a_{1}, a_{2}, a_{k}, a_{3}, ..., a_{k - 1}\}$ |
− | + | $\{a_{1}, a_{2}, a_{3}, a_{k}, ..., a_{k - 1}\}$ | |
− | |||
− | { | ||
$..........................$ | $..........................$ | ||
− | { | + | $\{a_{1}, a_{2}, a_{3}, ..., a_{k}, a_{k - 1}\}$ |
− | |||
− | |||
+ | $\{a_{1}, a_{2}, a_{3}, ..., a_{k - 1}, a_{k}\}$ (3) | ||
Получим $k$ различных перестановок, отличающихся в одной транспозиции. Возьмем следующую строку из кода Грея для перестановок длиной $n = k - 1$, которая будет выглядеть так (т.к. мы получили, что элемент стоящий на первом месте в перестановке будет "двигаться" вправо см. (1), (2), то и во второй перестановке первый элемент "поменяется" со вторым): | Получим $k$ различных перестановок, отличающихся в одной транспозиции. Возьмем следующую строку из кода Грея для перестановок длиной $n = k - 1$, которая будет выглядеть так (т.к. мы получили, что элемент стоящий на первом месте в перестановке будет "двигаться" вправо см. (1), (2), то и во второй перестановке первый элемент "поменяется" со вторым): | ||
− | + | $\{a_{2}, a_{1}, a_{3}, ..., a_{k - 1}\}$ | |
− | { | ||
− | |||
Элемент $a_{k}$ записываем в конец и начинаем "двигать" влево, меняя его с правостоящим: | Элемент $a_{k}$ записываем в конец и начинаем "двигать" влево, меняя его с правостоящим: | ||
+ | $\{a_{2}, a_{1}, a_{3}, ..., a_{k - 1}, a_{k}\}$ (4) | ||
− | + | $\{a_{2}, a_{1}, a_{3}, ..., a_{k}, a_{k - 1}\}$ | |
− | |||
− | { | ||
$..........................$ | $..........................$ | ||
− | { | + | $\{a_{2}, a_{1}, a_{3}, a_{k}, ..., a_{k - 1}\}$ |
− | { | + | $\{a_{2}, a_{1}, a_{k}, a_{3}, ..., a_{k - 1}\}$ |
− | { | + | $\{a_{2}, a_{k}, a_{1}, a_{3}, ..., a_{k - 1}\}$ |
− | |||
− | |||
+ | $\{a_{k}, a_{2}, a_{1}, a_{3}, ..., a_{k - 1}\}$ | ||
Опять получили $k$ различных перестановок, отличающихся в одной транспозиции. Далее берем третью строку из кода Грея для перестановок длиной $n = k - 1$, записываем в ее начало элемент $a_{k}$ и двигаем его вправо, как для первой перестановки и т.д. | Опять получили $k$ различных перестановок, отличающихся в одной транспозиции. Далее берем третью строку из кода Грея для перестановок длиной $n = k - 1$, записываем в ее начало элемент $a_{k}$ и двигаем его вправо, как для первой перестановки и т.д. | ||
− | |||
Для каждой перестановки длиной $n = k - 1$ (всего их $(k - 1)!$) мы получили $k$ новых перестановок. Итого $k\cdot(k - 1)! = k!$ перестановок. Все они различны, т.к. для любых двух перестановок из нового кода Грея элемент $a_{k}$ стоит на разных позициях,а если $a_{k}$ стоит на одной и той же позиции, то эти перестановки образованы от разных перестановок длиной $n = k - 1$ (см. (3), (4)). Так же все соседние перестановки отличаются ровно в одной транспозиции (образованные от одной перестановки различны благодаря построению, от разных перестановок {{---}} имеют $a_{k}$ на одной и той же позиции, но отличаются в одной транспозиции, т.к. является перестановками в коде Грея для перестановок длиной $n = k - 1$, см (3), (4)). Таким образом мы получили $k!$ различных перестановок длиной $k$, отличающихся в одной транспозиции. Алгоритм для построения кодов Грея для перестановок длиной $n$ получен. | Для каждой перестановки длиной $n = k - 1$ (всего их $(k - 1)!$) мы получили $k$ новых перестановок. Итого $k\cdot(k - 1)! = k!$ перестановок. Все они различны, т.к. для любых двух перестановок из нового кода Грея элемент $a_{k}$ стоит на разных позициях,а если $a_{k}$ стоит на одной и той же позиции, то эти перестановки образованы от разных перестановок длиной $n = k - 1$ (см. (3), (4)). Так же все соседние перестановки отличаются ровно в одной транспозиции (образованные от одной перестановки различны благодаря построению, от разных перестановок {{---}} имеют $a_{k}$ на одной и той же позиции, но отличаются в одной транспозиции, т.к. является перестановками в коде Грея для перестановок длиной $n = k - 1$, см (3), (4)). Таким образом мы получили $k!$ различных перестановок длиной $k$, отличающихся в одной транспозиции. Алгоритм для построения кодов Грея для перестановок длиной $n$ получен. |
Версия 01:05, 20 ноября 2011
код Грея для перестановки при n = 2
2 1 1 2 |
код Грея для перестановки при n = 3
3 2 1 2 3 1 2 1 3 1 2 3 1 3 2 3 1 2 |
код Грея для перестановки при n = 4
4 3 2 1 3 4 2 1 3 2 4 1 3 2 1 4 2 3 1 4 2 3 4 1 2 4 3 1 4 2 3 1 4 2 1 3 2 4 1 3 2 1 4 3 2 1 3 4 1 2 3 4 1 2 4 3 1 4 2 3 4 1 2 3 4 1 3 2 1 4 3 2 1 3 4 2 1 3 2 4 3 1 2 4 3 1 4 2 3 4 1 2 4 3 1 2 |
<wikitex>
Содержание
Определение
Коды Грея для перестановок — упорядочение перестановок, при котором соседние перестановки отличаются только элементарной транспозицией.
Элементарная транспозиция — транспозиция двух соседних элементов. Далее будем называть элементарную транспозицию просто транспозицией.
Построения кода Грея для перестановок
Чтобы построить код Грея для перестановки длиной $n$, будем использовать код Грея для перестановки длиной $n - 1$. Для $n = 1$ код Грея выглядит так:
$\{ 1 \}$ — $n!$ различных перестановок, отличных друг от друга в одной транспозиции (очевидно).
Будем строить код Грея для перестановок длины $n = k$. Предположим, что нам известен код Грея для перестановок длиной $n = k - 1$. Возьмем первую перестановку из известного нам кода. Пусть она выглядит так:
$\{a_{1}, a_{2}, a_{3}, ..., a_{k-1}\}$ ,где $a_{i}$ при $i = 1, 2, 3, ..., k$ — элементы перестановки.
Элемент $a_{k}$ запишем в начало этой перестановки:
$\{a_{k}, a_{1}, a_{2}, a_{3}, ..., a_{k - 1}\}$
Будем "двигать" этот элемент $a_{k}$ влево, меняя его с соседним:
$\{a_{k}, a_{1}, a_{2}, a_{3}, ..., a_{k - 1}\}$ (1)
$\{a_{1}, a_{k}, a_{2}, a_{3}, ..., a_{k - 1}\}$ (2)
$\{a_{1}, a_{2}, a_{k}, a_{3}, ..., a_{k - 1}\}$
$\{a_{1}, a_{2}, a_{3}, a_{k}, ..., a_{k - 1}\}$
$..........................$
$\{a_{1}, a_{2}, a_{3}, ..., a_{k}, a_{k - 1}\}$
$\{a_{1}, a_{2}, a_{3}, ..., a_{k - 1}, a_{k}\}$ (3)
Получим $k$ различных перестановок, отличающихся в одной транспозиции. Возьмем следующую строку из кода Грея для перестановок длиной $n = k - 1$, которая будет выглядеть так (т.к. мы получили, что элемент стоящий на первом месте в перестановке будет "двигаться" вправо см. (1), (2), то и во второй перестановке первый элемент "поменяется" со вторым):
$\{a_{2}, a_{1}, a_{3}, ..., a_{k - 1}\}$
Элемент $a_{k}$ записываем в конец и начинаем "двигать" влево, меняя его с правостоящим:
$\{a_{2}, a_{1}, a_{3}, ..., a_{k - 1}, a_{k}\}$ (4)
$\{a_{2}, a_{1}, a_{3}, ..., a_{k}, a_{k - 1}\}$
$..........................$
$\{a_{2}, a_{1}, a_{3}, a_{k}, ..., a_{k - 1}\}$
$\{a_{2}, a_{1}, a_{k}, a_{3}, ..., a_{k - 1}\}$
$\{a_{2}, a_{k}, a_{1}, a_{3}, ..., a_{k - 1}\}$
$\{a_{k}, a_{2}, a_{1}, a_{3}, ..., a_{k - 1}\}$
Опять получили $k$ различных перестановок, отличающихся в одной транспозиции. Далее берем третью строку из кода Грея для перестановок длиной $n = k - 1$, записываем в ее начало элемент $a_{k}$ и двигаем его вправо, как для первой перестановки и т.д.
Для каждой перестановки длиной $n = k - 1$ (всего их $(k - 1)!$) мы получили $k$ новых перестановок. Итого $k\cdot(k - 1)! = k!$ перестановок. Все они различны, т.к. для любых двух перестановок из нового кода Грея элемент $a_{k}$ стоит на разных позициях,а если $a_{k}$ стоит на одной и той же позиции, то эти перестановки образованы от разных перестановок длиной $n = k - 1$ (см. (3), (4)). Так же все соседние перестановки отличаются ровно в одной транспозиции (образованные от одной перестановки различны благодаря построению, от разных перестановок — имеют $a_{k}$ на одной и той же позиции, но отличаются в одной транспозиции, т.к. является перестановками в коде Грея для перестановок длиной $n = k - 1$, см (3), (4)). Таким образом мы получили $k!$ различных перестановок длиной $k$, отличающихся в одной транспозиции. Алгоритм для построения кодов Грея для перестановок длиной $n$ получен.
Сведение задачи построение кода Грея для перестановок к графам
Последовательность перестановок, полученная с помощью данного алгоритма имеет интересную интерпретацию. Так, если рассмотреть граф, вершины которого соответствуют всем перестановкам и в котором две вершины, соответствующие перестановкам
и , соединены ребром, если образуется из однократной транспозицией соседних элементов, то полученная последовательность является гамильтоновым путем в этом графе.См. также
Литература
Романовский, И.В. Дискретный Анализ - Санкт-Петербург 2003 стр. 39-41 <\wikitex>