Мера на полукольце множеств — различия между версиями
Строка 32: | Строка 32: | ||
Пусть <tex> A \setminus\bigcup\limits_{n=1}^{N} A_n = \bigcup\limits_{p} D_p </tex>, тогда <tex> A = \bigcup\limits_{n=1}^{N} A_n \cup \bigcup\limits_{p} D_p </tex>. | Пусть <tex> A \setminus\bigcup\limits_{n=1}^{N} A_n = \bigcup\limits_{p} D_p </tex>, тогда <tex> A = \bigcup\limits_{n=1}^{N} A_n \cup \bigcup\limits_{p} D_p </tex>. | ||
− | По сигма-аддитивности меры, <tex> m(A) = \sum\limits_{n = 1}^{N} A_n + \sum\limits_{p} D_p </tex>. | + | По сигма-аддитивности меры, <tex> m(A) = \sum\limits_{n = 1}^{N} m(A_n) + \sum\limits_{p} m(D_p) </tex>. |
− | Так как второе слагаемое неотрицательно, то <tex> m(A) \ge \sum\limits_{n = 1}^{N} A_n </tex>. Устремляя <tex> N </tex> к бесконечности, получаем требуемое. | + | Так как второе слагаемое неотрицательно, то <tex> m(A) \ge \sum\limits_{n = 1}^{N} m(A_n) </tex>. Устремляя <tex> N </tex> к бесконечности, получаем требуемое. |
2) | 2) |
Версия 05:38, 31 декабря 2011
Определение: |
Пусть 1) 2) Для дизъюнктных и , такого, что , (сигма-аддитивность) | - полукольцо. называется мерой на нем, если:
Примеры мер:
- (патологический)
- - сходящийся положительный ряд, , для полагаем
- Для полукольца ячеек примером меры является , где - длина ячейки. То, что длина ячейки является корректно определенной мерой — нетривиальный факт, который будет доказан нами позднее.
Выведем 2 важных свойства меры на полукольце:
Лемма: |
Пусть — мера на полукольце , тогда:
1) Для 2) Для и дизъюнктных выполняется и дизъюнктных выполняется (сигма-полуаддитивность) |
Доказательство: |
1) Пусть , тогда .По сигма-аддитивности меры, .Так как второе слагаемое неотрицательно, то . Устремляя к бесконечности, получаем требуемое.2) Можно представить Разобьем множества , каждое из пересечений принадлежит , поэтому , отсюда . на группы, так чтобы в группе с номером были дизъюнктные множества, объединение которых является подмножеством . Для каждой такой группы, мера объединения ограничена по пункту 1) мерой , поэтому получаем . |