Задача коммивояжера, ДП по подмножествам — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Динамическое программирование по подмножествам (по маскам))
Строка 45: Строка 45:
  
 
Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени.
 
Данное решение требует <tex>O({2^n}\times{n})</tex> памяти и <tex>O({2^n}\times{n^2})</tex> времени.
 +
 +
== Псевдокод ==
 +
<code>
 +
//разработка
 +
</code>
  
 
== Ссылки ==  
 
== Ссылки ==  

Версия 02:43, 26 ноября 2011

Задача о коммивояжере (англ. Travelling - salesman problem, TSP) - это задача, в которой определяется кратчайший замкнутый путь, соединяющий заданное множество, которое состоит из [math] N [/math] точек на плоскости.

Формулировка задачи

Коммивояжер должен посетить [math] N [/math] городов, побывав в каждом из них ровно по одному разу и завершив путешествие в том городе, с которого он начал. В какой последовательности ему нужно обходить города, чтобы общая длина его пути была наименьшей?

Варианты решения

В теории алгоритмов NP-полная (NPC, NP-complete) задача — задача из класса NP, к которой можно свести любую другую задачу из класса NP за полиномиальное время. Таким образом, NP-полные задачи образуют в некотором смысле подмножество «самых сложных» задач в классе NP; и если для какой-то из них будет найден «быстрый» алгоритм решения, то и любая другая задача из класса NP может быть решена так же «быстро». Cтатус NP-полных задач пока что неизвестен. Для их решения до настоящего времени не разработано алгоритмов с полиномиальным временем работы, но и не доказано, что для какой-то из них алгоритмов не существует. Этот так называемый вопрос P[math]\neq[/math]NP с момента своей постановки в 1971 году стал одним из самых трудных в теории вычислительных систем.

Так вот задача о коммивояжере относится к классу NP-полных задач. Рассмотрим два варианта решения.

Перебор перестановок

Можно решить задачу перебором всевозможных перестановок. Для этого нужно сгенерировать все [math] N! [/math] всевозможных перестановок вершин исходного графа, подсчитать для каждой перестановки длину маршрута и выбрать минимальный из них. Но тогда задача оказывается неосуществимой даже для достаточно небольших [math]N[/math]. Сложность алгоритма [math]O(N!)[/math].

Динамическое программирование по подмножествам (по маскам)

Задача о коммивояжере представляет собой поиск кратчайшего гамильтонова цикла в графе.

Смоделируем данную задачу при помощи графа. При этом вершинам будут соответствовать города, а ребрам - дороги. Пусть в графе [math] G = (V, E)[/math] [math] N [/math] вершин, пронумерованных от [math]0[/math] до [math]N-1[/math] и каждое ребро [math](i, j) \in E [/math] имеет некоторый вес [math] p(i, j)[/math]. Необходимо найти гамильтонов цикл, сумма весов по ребрам которого минимальна.

Зафиксируем начальную вершину [math]s[/math] и будем искать гамильтонов цикл наименьшей стоимости - путь от [math]s[/math] до [math]s[/math], проходящий по всем вершинам(кроме первоначальной) один раз. Т.к. искомый цикл проходит через каждую вершину, то выбор [math]s[/math] не имеет значения. Поэтому будем считать [math]S = 0 [/math].

Подмножества вершин будем кодировать битовыми векторами, обозначим [math]mask_i[/math] значение [math]i[/math]-ого бита в векторе [math]mask[/math].

Обозначим [math]d[i][mask][/math] как наименьшую стоимость пути из вершины [math]i[/math] в вершину [math]0[/math], проходящую (не считая вершины [math]i[/math]) единожды по всем тем и только тем вершинам [math]j[/math], для которых [math]mask_j = 1[/math] (т.е. [math]mask[/math] - подмножество вершин исходного графа, которые осталось посетить).

Конечное состояние - когда находимся в 0-й вершине, все вершины посещены (т.е. [math]i = 0[/math], [math]m = 0[/math]). Для остальных состояний перебираем все возможные переходы из [math]i[/math]-й вершины в одну из непосещенных ранее и выбираем способ, дающий минимальный результат. Если возможные переходы отсутствуют, решения для данной подзадачи не существует (обозначим ответ для такой подзадачи как [math]\infty[/math]).

То есть, [math]d[i][mask][/math] считается по следующему правилу:

[math] d[i][mask] = \begin{cases} 0, &\text{if }i = 0\text{ and }mask = 0 \\ min_{j: mask_j=1, (i, j) \in E} \begin{Bmatrix} p(i, j) + d[j][mask - 2^j] \end{Bmatrix}, & \text{if } i\neq 0 \text{ or } mask \neq 0\\ \infty, & \text{if } i \neq 0 \text{ and } mask \neq 0 \text{ and set of possible transitions is empty} \end{cases} [/math]

где, [math] \text {and ---}[/math] и, [math]\text {or ---} [/math] или, [math]\text {set of possible transitions is empty ---}[/math] множество переходов пусто.


Стоимостью минимального гамильтонова цикла в исходном графе будет значение [math] d[0][2^n-1][/math] - стоимость пути из [math]0[/math]-й вершины в [math]0[/math]-ю, при необходимости посетить все вершины.

Восстановить сам цикл несложно. Для этого воспользуемся соотношением [math] d[i][mask] = d(i, j) + d[j][m - 2^j] [/math], которое выполняется для всех ребер, входящих в минимальный цикл . Начнем с состояния [math] i = 0 [/math], [math] mask = 2^n - 1[/math], найдем вершину [math]j[/math], для которой выполняется указанное соотношение, добавим [math]j[/math] в ответ, пересчитаем текущее состояние как [math]i = j[/math], [math] mask = mask - 2^j [/math]. Процесс заканчивается в состоянии [math]i = 0[/math], [math] mask = 0 [/math].

Данное решение требует [math]O({2^n}\times{n})[/math] памяти и [math]O({2^n}\times{n^2})[/math] времени.

Псевдокод

//разработка

Ссылки

Литература

  • Романовский И. В. Дискретный анализ. СПб.: Невский Диалект; БХВ-Петербург, 2003. ISBN 5-7940-0114-3
  • Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. М.: Издательский дом "Вильямс", 2005. ISBN 5-8459-0857-4