Теорема Дирака — различия между версиями
Строка 1: | Строка 1: | ||
+ | ==Теорема== | ||
{{Лемма | {{Лемма | ||
|about=о длине цикла | |about=о длине цикла | ||
Строка 12: | Строка 13: | ||
|proof= | |proof= | ||
Пусть <tex>C</tex> - цикл наибольшей длины в графе <tex>G</tex>. По лемме его длина <tex>l \ge \delta + 1</tex>. Если <tex>C</tex> - гамильтонов, то теорема доказана. Предположим обратное, т. е. <tex>G \backslash C \ne \varnothing</tex>. Рассмотрим путь <tex>P = x..y : P \cap C = \{y\}</tex> наибольшей длины <tex>m</tex>. Заметим, что по условию <tex>\delta \ge n/2</tex>, а значит <tex>\delta \ge n - \delta > n - l = |V(G \backslash C)|</tex> и каждая вершина из <tex>G \backslash C</tex> смежна с некоторыми вершинами из <tex>C</tex>. | Пусть <tex>C</tex> - цикл наибольшей длины в графе <tex>G</tex>. По лемме его длина <tex>l \ge \delta + 1</tex>. Если <tex>C</tex> - гамильтонов, то теорема доказана. Предположим обратное, т. е. <tex>G \backslash C \ne \varnothing</tex>. Рассмотрим путь <tex>P = x..y : P \cap C = \{y\}</tex> наибольшей длины <tex>m</tex>. Заметим, что по условию <tex>\delta \ge n/2</tex>, а значит <tex>\delta \ge n - \delta > n - l = |V(G \backslash C)|</tex> и каждая вершина из <tex>G \backslash C</tex> смежна с некоторыми вершинами из <tex>C</tex>. | ||
− | Заметим, что вершина <tex>x</tex> не может быть смежна | + | Заметим, что вершина <tex>x</tex> не может быть смежна: |
− | * из <tex>C</tex>, расстояние от которых до <tex>y</tex> (по <tex>C</tex>) не превышает m. Действительно, пусть вершина <tex>v \in C</tex> и расстояние от <tex>v</tex> до <tex>y</tex> по циклу меньше <tex>m</tex>. Тогда этот участок цикла можно заменить на <tex>v \rightarrow x \rightarrow P \rightarrow y</tex>, длина которого <tex>m + 1</tex>. Таким образом образуется цикл большей длины, что противоречит предположению о максимальности цикла <tex>C</tex>. | + | * с вершинами из <tex>C</tex>, расстояние от которых до <tex>y</tex> (по <tex>C</tex>) не превышает m. Действительно, пусть вершина <tex>v \in C</tex> и расстояние от <tex>v</tex> до <tex>y</tex> по циклу меньше <tex>m</tex>. Тогда этот участок цикла можно заменить на <tex>v \rightarrow x \rightarrow P \rightarrow y</tex>, длина которого <tex>m + 1</tex>. Таким образом образуется цикл большей длины, что противоречит предположению о максимальности цикла <tex>C</tex>. Отсюда также следует, что <tex>l > 2m</tex>. |
* двум смежным вершинам на <tex>C</tex>. Пусть <tex>u, v \in C</tex> и <tex>\{(u, v), (u, x), (x, v)\} \in E</tex>. Тогда заменив ребро <tex>(u, v)</tex> на <tex>u \rightarrow x \rightarrow v</tex>, увеличим длину цикла на <tex>1</tex>. | * двум смежным вершинам на <tex>C</tex>. Пусть <tex>u, v \in C</tex> и <tex>\{(u, v), (u, x), (x, v)\} \in E</tex>. Тогда заменив ребро <tex>(u, v)</tex> на <tex>u \rightarrow x \rightarrow v</tex>, увеличим длину цикла на <tex>1</tex>. | ||
− | *<tex>G \backslash (C \cup P)</tex>, поскольку <tex>P</tex> максимальный. | + | * вершинам из <tex>G \backslash (C \cup P)</tex>, поскольку <tex>P</tex> максимальный. |
+ | |||
Получаем <tex>deg\ x \le m + (l - 2m)/2 =l/2 < n/2 \le \delta</tex>. Противоречие. | Получаем <tex>deg\ x \le m + (l - 2m)/2 =l/2 < n/2 \le \delta</tex>. Противоречие. | ||
}} | }} | ||
− | + | ==Альтернативное доказательство== | |
+ | |||
+ | {{Теорема | ||
+ | |about=Дирак(альтернативное доказательство) | ||
+ | |statement= | ||
+ | Пусть <tex>G</tex> - неориентированный граф и <tex>\delta</tex> - минимальная степень его вершин. Если <tex>n \ge 3</tex> и <tex>\delta \ge n/2</tex>, то <tex>G</tex> - гамильтонов граф. | ||
+ | |proof= | ||
+ | Для <tex>\forall k</tex> верна импликация <tex>d_k \le k < n/2 \Rightarrow d_{n-k} \ge n-k</tex>, поскольку левая её часть всегда ложна. | ||
+ | }} | ||
== Источники == | == Источники == |
Версия 07:40, 1 декабря 2011
Теорема
Лемма (о длине цикла): |
Пусть - произвольный неориентированный граф и - минимальная степень его вершин. Если , то в графе существует цикл длиной . |
Доказательство: |
Рассмотрим путь максимальной длины | . Все смежные с вершины лежат на . Обозначим . Тогда . Цикл имеет длину
Теорема (Дирак): |
Пусть - неориентированный граф и - минимальная степень его вершин. Если и , то - гамильтонов граф. |
Доказательство: |
Пусть - цикл наибольшей длины в графе . По лемме его длина . Если - гамильтонов, то теорема доказана. Предположим обратное, т. е. . Рассмотрим путь наибольшей длины . Заметим, что по условию , а значит и каждая вершина из смежна с некоторыми вершинами из . Заметим, что вершина не может быть смежна:
|
Альтернативное доказательство
Теорема (Дирак(альтернативное доказательство)): |
Пусть - неориентированный граф и - минимальная степень его вершин. Если и , то - гамильтонов граф. |
Доказательство: |
Для | верна импликация , поскольку левая её часть всегда ложна.
Источники
Graham, R.L., Groetschel M., and Lovász L., eds. (1996). Handbook of Combinatorics, Volumes 1