Использование обхода в глубину для проверки связности — различия между версиями
Строка 1: | Строка 1: | ||
− | == Алгоритм проверки наличия пути из | + | == Алгоритм проверки наличия пути из s в t == |
* '''Задача''' | * '''Задача''' | ||
− | Дан граф G и две вершины | + | Дан граф <tex>G</tex> и две вершины <tex>s</tex> и <tex>t</tex>. Необходимо проверить, существует ли путь из вершины <tex>s</tex> в вершину <tex>t</tex> по рёбрам графа <tex>G</tex>. |
* '''Алгоритм''' | * '''Алгоритм''' | ||
− | Небольшая модификация алгоритма [[Обход в глубину, цвета вершин|обхода в глубину]]. Смысл алгоритма заключается в том, чтобы запустить обход в глубину из вершины | + | Небольшая модификация алгоритма [[Обход в глубину, цвета вершин|обхода в глубину]]. Смысл алгоритма заключается в том, чтобы запустить обход в глубину из вершины <tex>s</tex> и проверять при каждом посещении вершины, не является ли она искомой вершиной <tex>t</tex>. |
− | Так как в первый момент времени все пути в графе "белые", то если вершина | + | Так как в первый момент времени все пути в графе "белые", то если вершина <tex>t</tex> и была достижима из <tex>s</tex>, то по [[Лемма о белых путях|лемме о белых путях]] в какой-то момент времени мы зайдём в вершину <tex>t</tex>, чтобы её покрасить. Время работы алгоритма <tex>O(M + N)</tex>. |
* '''Реализация''' | * '''Реализация''' | ||
Строка 35: | Строка 35: | ||
== Алгоритм проверки связности графа G == | == Алгоритм проверки связности графа G == | ||
* '''Задача''' | * '''Задача''' | ||
− | Дан [[Основные определения теории графов|неориентированный граф]] G. Необходимо проверить является ли он связным. | + | Дан [[Основные определения теории графов|неориентированный граф]] <tex>G</tex>. Необходимо проверить, является ли он связным. |
* '''Алгоритм''' | * '''Алгоритм''' | ||
− | Заведём счётчик количества вершин которые мы ещё не посетили. В стандартной процедуре dfs() будем уменьшать счётчик на единицу при входе в процедуру. Запустимся от какой-то вершины нашего графа. Если в конце работы процедуры dfs() счётчик равен нулю, то мы побывали во всех вершинах графа, а следовательно он связен. Если счётчик отличен от нуля, то мы не побывали в какой-то вершине графа. Работает алгоритм за O(M + N). | + | Заведём счётчик количества вершин которые мы ещё не посетили. В стандартной процедуре dfs() будем уменьшать счётчик на единицу при входе в процедуру. Запустимся от какой-то вершины нашего графа. Если в конце работы процедуры dfs() счётчик равен нулю, то мы побывали во всех вершинах графа, а следовательно он связен. Если счётчик отличен от нуля, то мы не побывали в какой-то вершине графа. Работает алгоритм за <tex>O(M + N)</tex>. |
* '''Реализация''' | * '''Реализация''' |
Версия 00:58, 23 марта 2012
Алгоритм проверки наличия пути из s в t
- Задача
Дан граф
и две вершины и . Необходимо проверить, существует ли путь из вершины в вершину по рёбрам графа .- Алгоритм
Небольшая модификация алгоритма обхода в глубину. Смысл алгоритма заключается в том, чтобы запустить обход в глубину из вершины и проверять при каждом посещении вершины, не является ли она искомой вершиной . Так как в первый момент времени все пути в графе "белые", то если вершина и была достижима из , то по лемме о белых путях в какой-то момент времени мы зайдём в вершину , чтобы её покрасить. Время работы алгоритма .
- Реализация
vector<bool> visited; //вектор для хранения информации о пройденных и не пройденных вершинах bool dfs(int u) { if(u == t) return true; visited[u] = true; //помечаем вершину как пройденную for (v таких, что (u, v) — ребро в G) //проходим по смежным с u вершинам if (!visited[v]) //проверяем, не находились ли мы ранее в выбранной вершине if(dfs(v)) return true; return false; } int main() { ... //задание графа G с количеством вершин n и вершин S и T. visited.assign(n, false); //в начале все вершины в графе не пройденные if(dfs(s)) std::out << "Путь из S в T существует"; else std::out << "Пути из S в T нет"; return 0; }
Алгоритм проверки связности графа G
- Задача
Дан неориентированный граф . Необходимо проверить, является ли он связным.
- Алгоритм
Заведём счётчик количества вершин которые мы ещё не посетили. В стандартной процедуре dfs() будем уменьшать счётчик на единицу при входе в процедуру. Запустимся от какой-то вершины нашего графа. Если в конце работы процедуры dfs() счётчик равен нулю, то мы побывали во всех вершинах графа, а следовательно он связен. Если счётчик отличен от нуля, то мы не побывали в какой-то вершине графа. Работает алгоритм за
.- Реализация
vector<bool> visited; //вектор для хранения информации о пройденных и не пройденных вершинах int k = 0; void dfs(int u) { k--; visited[u] = true; //помечаем вершину как пройденную for (v таких, что (u, v) — ребро в G) //проходим по смежным с u вершинам if (!visited[v]) //проверяем, не находились ли мы ранее в выбранной вершине dfs(v); } int main() { ... //задание графа G с количеством вершин n и вершин S и T. visited.assign(n, false); //в начале все вершины в графе не пройденные k = n; for(int i = 0; i < n; i++) dfs(i); if(k == 0) std::out << "Граф связен"; //вывести, что граф связен else std::out << "Граф несвязен"; //вывести, что граф несвязен return 0; }