Отношение эквивалентности — различия между версиями
Nook (обсуждение | вклад) |
(добавил примеры из «Транзитивного отношение») |
||
Строка 41: | Строка 41: | ||
}} | }} | ||
Семейство всех классов эквивалентности множества образует множество, называемое ''фактор-множеством'', или ''факторизацией'' множества <tex>M</tex> по отношению <tex>\thicksim</tex>, и обозначаемое <tex>M/^{\thicksim}</tex>. | Семейство всех классов эквивалентности множества образует множество, называемое ''фактор-множеством'', или ''факторизацией'' множества <tex>M</tex> по отношению <tex>\thicksim</tex>, и обозначаемое <tex>M/^{\thicksim}</tex>. | ||
+ | |||
+ | == Примеры == | ||
+ | |||
+ | * ''Равенство'' - классический пример отношения эквивалентности на любом множестве, в т. ч. [[Вещественные числа|вещественных чисел]] | ||
+ | * Равенство по ''модулю:'' <tex> a \equiv b~(mod ~ m) </tex> | ||
+ | * В ''Евклидовой геометрии:'' | ||
+ | ** отношение подобия<tex> ("\thicksim ") </tex> | ||
+ | ** отношение параллельности<tex>\colon ~ ("\parallel ") </tex> | ||
+ | ** отношение конгруэнтности<tex>\colon ~ ("\cong ") </tex> | ||
+ | * Разбиение многоугольников по количеству вершин | ||
+ | * Оношение ''равносильности'' на множестве уравнений | ||
+ | * Отношение [[Мощность множества|равномощности]] множеств | ||
+ | * Отношение ''принадлежать к одному виду'' на множестве животных | ||
+ | * Отношение ''жить в одном городе'' на множестве людей | ||
== Ссылки == | == Ссылки == |
Версия 10:30, 12 января 2012
Содержание
Определение
Определение: |
Бинарное отношение на множестве называется отношением эквивалентности, если оно обладает следующими свойствами:
|
Отношение эквивалентности обозначают символом
. Запись вида читают как " эквивалентно "Примеры отношений эквивалентности
- Отношение равенства( ) является тривиальным примером отношения эквивалентности на любом множестве.
- Отношение равенства по модулю : на множестве целых чисел.
- Отношение параллельности прямых на плоскости.
- Отношение подобия фигур на плоскости.
- Отношение равносильности на множестве уравнений.
- Отношение связности вершин в графе.
- Отношение быть одного роста на множестве людей.
Следующие отношения не являются отношениями эквивалентности:
- Отношения порядка, так как они не являются симметричными.
- Отношение быть знакомым на множестве людей, так как оно не транзитивное.
Классы эквивалентности
Определение: |
Система непустых подмножеств
| множества называется разбиением данного множества, если:
Примерами разбиений являются:
- Разбиение многоугольников на группы по числу вершин.
- Разбиение треугольников по свойствам углов (остроугольные, прямоугольные, тупоугольные).
- Разбиение учащихся школы по классам.
Теорема: |
Если на множестве M задано отношение эквивалентности , то оно порождает разбиение этого множества на классы эквивалентности такое, что:
|
Семейство всех классов эквивалентности множества образует множество, называемое фактор-множеством, или факторизацией множества
по отношению , и обозначаемое .Примеры
- Равенство - классический пример отношения эквивалентности на любом множестве, в т. ч. вещественных чисел
- Равенство по модулю:
- В Евклидовой геометрии:
- отношение подобия
- отношение параллельности
- отношение конгруэнтности
- Разбиение многоугольников по количеству вершин
- Оношение равносильности на множестве уравнений
- Отношение равномощности множеств
- Отношение принадлежать к одному виду на множестве животных
- Отношение жить в одном городе на множестве людей