Ковариация случайных величин — различия между версиями
Rukin (обсуждение | вклад) (→Вычисление) |
Rukin (обсуждение | вклад) (→Свойства ковариации) |
||
Строка 21: | Строка 21: | ||
* Пусть <tex>\eta_1,\ldots, \eta_n</tex> случайные величины, а <tex>\xi_1 = \sum\limits_{i=1}^n a_i \eta_i,\; \xi_2 = \sum\limits_{j=1}^m b_j \eta_j</tex> их две произвольные линейные комбинации. Тогда | * Пусть <tex>\eta_1,\ldots, \eta_n</tex> случайные величины, а <tex>\xi_1 = \sum\limits_{i=1}^n a_i \eta_i,\; \xi_2 = \sum\limits_{j=1}^m b_j \eta_j</tex> их две произвольные линейные комбинации. Тогда | ||
: <tex>Cov(\xi_1,\xi_2) = \sum\limits_{i=1}^n\sum\limits_{j=1}^m a_i b_j Cov(\eta_i,\eta_j)</tex>. | : <tex>Cov(\xi_1,\xi_2) = \sum\limits_{i=1}^n\sum\limits_{j=1}^m a_i b_j Cov(\eta_i,\eta_j)</tex>. | ||
− | |||
* Ковариация случайной величины с собой равна её дисперсии: | * Ковариация случайной величины с собой равна её дисперсии: | ||
: <tex>Cov(\eta,\eta) = \mathrm{D}[\eta]</tex>. | : <tex>Cov(\eta,\eta) = \mathrm{D}[\eta]</tex>. |
Версия 09:04, 15 декабря 2011
Определение: |
Ковариация случайных величин — мера линейной зависимости случайных величин. |
Вычисление
Обозначается как случайные величины.
, где -В силу линейности математического ожидания, ковариация может быть записана как:
Итого,
Свойства ковариации
- Ковариация симметрична:
- .
- Пусть случайные величины, а их две произвольные линейные комбинации. Тогда
- .
- Ковариация случайной величины с собой равна её дисперсии:
- .
- Если независимые случайные величины, то
- .
Обратное, вообще говоря, неверно.
- Неравенство Коши — Буняковского:
- .