Ковариация случайных величин — различия между версиями
Rukin (обсуждение | вклад) (→Свойства ковариации) |
Rukin (обсуждение | вклад) (→Свойства ковариации) |
||
Строка 22: | Строка 22: | ||
: <tex>Cov(\xi_1,\xi_2) = \sum\limits_{i=1}^n\sum\limits_{j=1}^m a_i b_j Cov(\eta_i,\eta_j)</tex>. | : <tex>Cov(\xi_1,\xi_2) = \sum\limits_{i=1}^n\sum\limits_{j=1}^m a_i b_j Cov(\eta_i,\eta_j)</tex>. | ||
* Ковариация случайной величины с собой равна её дисперсии: | * Ковариация случайной величины с собой равна её дисперсии: | ||
− | : <tex>Cov(\eta,\eta) = \ | + | : <tex>Cov(\eta,\eta) = E(\eta^2) - (E(\eta))^2 = D[\eta]</tex>. |
* Если <tex>\eta,\xi</tex> независимые случайные величины, то | * Если <tex>\eta,\xi</tex> независимые случайные величины, то | ||
: <tex>Cov(\eta,\xi) = 0</tex>. | : <tex>Cov(\eta,\xi) = 0</tex>. |
Версия 09:06, 15 декабря 2011
Определение: |
Ковариация случайных величин — мера линейной зависимости случайных величин. |
Вычисление
Обозначается как случайные величины.
, где -В силу линейности математического ожидания, ковариация может быть записана как:
Итого,
Свойства ковариации
- Ковариация симметрична:
- .
- Пусть случайные величины, а их две произвольные линейные комбинации. Тогда
- .
- Ковариация случайной величины с собой равна её дисперсии:
- .
- Если независимые случайные величины, то
- .
Обратное, вообще говоря, неверно.
- Неравенство Коши — Буняковского:
- .