Метод четырёх русских для умножения матриц — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 35: Строка 35:
 
Приведем анализ выбора числа <tex>k</tex> для получения оптимальной сложности алгоритма.
 
Приведем анализ выбора числа <tex>k</tex> для получения оптимальной сложности алгоритма.
  
В силу возрастания функции <tex>f(k) = 2^{2k}k</tex> и убывания функции <tex>g(k) = \frac{n^3}{k}</tex> имеем, что сложность будет оптимальна при таком значении <tex>k</tex>, что <tex>f(k) = g(k)</tex>.
+
В силу возрастания функции <tex>f(k) = 2^{2k}k</tex> и убывания функции <tex>g(k) = \frac{n^3}{k}</tex> имеем, что сложность будет оптимальна при таком значении <tex>k</tex>, что <tex>f(k) = g(k)</tex>. Прологарифмируем обе части этого равенства:
 +
 
 +
<tex>k \ln 4 + \ln k= 3 \ln n - \ln k</tex>
 +
 
 +
<tex>k = \frac{3 \ln n - 2 \ln k}{\ln 4} </tex>
 +
 
 +
<tex> k  = 3 \log_4 n - 2 \log_4 k </tex>
 +
 
 +
В силу того, что <tex> \log_4 k </tex> пренебрежительно мал по сравнению с <tex> k </tex> имеем, что <tex> k </tex> с точностью до константы равен <tex> \log n </tex>
  
 
Таким образом, при подстановке <tex>k = \log n</tex>, получаем итоговую трудоёмкость <tex dpi=140>O(n^2 \log n) + O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n})</tex>
 
Таким образом, при подстановке <tex>k = \log n</tex>, получаем итоговую трудоёмкость <tex dpi=140>O(n^2 \log n) + O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n})</tex>

Версия 04:17, 16 декабря 2011

Постановка задачи

Рассмотрим следующую задачу: «Дано две квадратных матрицы [math]A_{[n \times n]}[/math] и [math]B_{[n \times n]}[/math], состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю [math]2[/math]

Простое решение

Если мы будем считать произведение матриц [math]C = A \cdot B[/math] по определению([math]c_{i, j} = \sum\limits_{k = 1}^n a_{i,k}b_{k,j}[/math]), то трудоёмкость алгоритма составит [math]O(n^3)[/math] — каждый из [math]n^2[/math] элементов результирующей матрицы [math]C[/math] вычисляется за время, пропорциональное [math]n[/math].

Сейчас будет показано, как немного уменьшить это время.

Предподсчёт

Воспользуемся следующим приёмом. Возьмём некоторое целое число [math]k[/math]. Для всех возможных пар двоичных векторов длины [math]k[/math] подсчитаем и запомним их скалярное произведение по модулю [math]2[/math].

Сжатие матриц

Воспользуемся полученным в предыдущем пункте результатом.

Возьмём первую матрицу. разделим каждую её строку на куски размера [math]k[/math]. Для каждого куска определим номер двоичного вектора, который соответствует числам, находящимся на этом куске. Если кусок получился неравным по длине [math]k[/math](последний кусок строки), то будем считать, что в конце в нём идут не влияющие на умножение нули. Получим матрицу [math]A'_{n \times \lceil\frac{n}{k} \rceil}[/math].

Аналогично поступим с матрицей [math]B[/math], вместо строк деля столбцы. Получим матрицу [math]B'_{\lceil\frac nk\rceil\times n}[/math].

Теперь, если вместо произведения матриц [math]A[/math] и [math]B[/math] считать произведение новых матриц [math]A'[/math] и [math]B'[/math], воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы [math]C[/math] будет получаться уже за время, пропорциональное [math]\lceil \frac nk \rceil[/math] вместо [math]n[/math], и время произведения матриц сократится с [math]O(n^3)[/math] до [math]O(n^2 \cdot\frac nk) = O(\frac{n^3}{k}) [/math].

Оценка трудоёмкости и выбор k

Оценим трудоёмкость данного алгоритма.

  • Предподсчёт скалярных произведений работает за [math]O(2^{2k}k)[/math].
  • Создание матриц [math]A'[/math] и [math]B'[/math][math]O(N^2)[/math]
  • Перемножение полученных матриц — [math]O(\frac{n^3}{k})[/math]

Итого: [math]O(2^{2k}k) + O(\frac{n^3}{k})[/math]. Приведем анализ выбора числа [math]k[/math] для получения оптимальной сложности алгоритма.

В силу возрастания функции [math]f(k) = 2^{2k}k[/math] и убывания функции [math]g(k) = \frac{n^3}{k}[/math] имеем, что сложность будет оптимальна при таком значении [math]k[/math], что [math]f(k) = g(k)[/math]. Прологарифмируем обе части этого равенства:

[math]k \ln 4 + \ln k= 3 \ln n - \ln k[/math]

[math]k = \frac{3 \ln n - 2 \ln k}{\ln 4} [/math]

[math] k = 3 \log_4 n - 2 \log_4 k [/math]

В силу того, что [math] \log_4 k [/math] пренебрежительно мал по сравнению с [math] k [/math] имеем, что [math] k [/math] с точностью до константы равен [math] \log n [/math]

Таким образом, при подстановке [math]k = \log n[/math], получаем итоговую трудоёмкость [math]O(n^2 \log n) + O(\frac{n^3}{\log n}) = O(\frac{n^3}{\log n})[/math]