Метод четырёх русских для умножения матриц — различия между версиями
Строка 1: | Строка 1: | ||
− | |||
− | |||
Рассмотрим следующую задачу: «Дано две квадратных матрицы <tex>A_{[n \times n]}</tex> и <tex>B_{[n \times n]}</tex>, | Рассмотрим следующую задачу: «Дано две квадратных матрицы <tex>A_{[n \times n]}</tex> и <tex>B_{[n \times n]}</tex>, | ||
состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю <tex>2</tex>.» | состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю <tex>2</tex>.» |
Версия 06:07, 21 декабря 2011
Рассмотрим следующую задачу: «Дано две квадратных матрицы
и , состоящие из нулей и единиц. Нужно найти их произведение. При этом, все операции выполняются по модулю .»Содержание
Простое решение
Если мы будем считать произведение матриц
по определению( ), то трудоёмкость алгоритма составит — каждый из элементов результирующей матрицы вычисляется за время, пропорциональное .Сейчас будет показано, как немного уменьшить это время.
Сжатие матриц
Для выполнения сжатия матриц выполним следующий предподсчёт : для всех возможных пар двоичных векторов длины
подсчитаем и запомним их скалярное произведение по модулю .Возьмём первую матрицу. разделим каждую её строку на куски размера
. Для каждого куска определим номер двоичного вектора, который соответствует числам, находящимся на этом куске. Если кусок получился неравным по длине (последний кусок строки), то будем считать, что в конце в нём идут не влияющие на умножение нули. Получим матрицу .Аналогично поступим с матрицей
, вместо строк деля столбцы. Получим матрицу .Теперь, если вместо произведения матриц
и считать произведение новых матриц и , воспользовавшись посчитанными скалярными произведениями, то каждый элемент матрицы будет получаться уже за время, пропорциональное вместо , и время произведения матриц сократится с до .Оценка трудоёмкости и выбор k
Оценим трудоёмкость данного алгоритма.
- Предподсчёт скалярных произведений работает за .
- Создание матриц и —
- Перемножение полученных матриц —
Итого:
. Приведем анализ выбора числа для получения оптимальной сложности алгоритма.В силу возрастания функции
и убывания функции имеем, что сложность будет оптимальна при таком значении , что . Прологарифмируем обе части этого равенства:
В силу того, что
пренебрежительно мал по сравнению с имеем, что с точностью до константы равенТаким образом, при подстановке
, получаем итоговую трудоёмкостьКод алгоритма
// Предподсчёт скалярных произведений // Пусть precalc[I][J] - "скалярное произведение для битовых представлений" чисел I и J k = log n for I = 0 to 2^k - 1 do for J = 0 to 2^k - 1 do { Считаем скалярное произведение двоичных векторов, заданных двоичным представлением чисел I и J. Записываем результат в матрицу precalc. } // Создание сжатых матриц for I = 0 to n - 1 { для всех стартовых позиций start группы из k элементов { Представляем текущую двоичную последовательность в текущей строке I матрицы A как десятичное число. Записываем полученное значение в A'. } } for J = 0 to n - 1 { для всех стартовых позиций start группы из k элементов { Представляем текущую двоичную последовательность в текущем столбце J матрицы B как десятичное число. Записываем полученное значение в B'. } } //Перемножение полученных матриц for I = 0 to n - 1 do for J = 0 to n - 1 do { Считаем произведение I строки A' и J столбца B', пользуясь precalc. Записываем полученное значение в матрицу ответа. }
Литература
- Gregory V. Bard — Accelerating Cryptanalysis with the Method of Four Russians