Матричное представление перестановок — различия между версиями
(→Свойства) |
(→Свойства) |
||
Строка 40: | Строка 40: | ||
== Свойства == | == Свойства == | ||
− | + | {{Утверждение | |
− | + | |statement=Для любых двух перестановок <tex>\sigma, \pi</tex> их матрицы обладают свойством: | |
+ | |||
+ | <center><tex>P_\sigma P_\pi = P_{\sigma \circ \pi}</tex></center> | ||
+ | |||
+ | где <tex>\circ</tex> - операция [[Умножение перестановок, обратная перестановка, группа перестановок| умножения двух перестановок]] | ||
+ | |proof=Доказательство: | ||
+ | |||
+ | Рассмотрим <tex>{(P_\sigma P_\pi)}_{i,j} = \sum\limits_{k = 1}^{n}{({P_\sigma}_{i,k} {P_\pi}_{k,j})}</tex> | ||
+ | эта сумма может быть равна нулю или единице, причем единице в том случае, если в <tex>i</tex> - той строчке на <tex>k</tex> - том столбце матрицы <tex>P_\sigma</tex> и в <tex>k</tex> - той строчке на <tex>j</tex> - том столбце матрицы <tex>P_\pi</tex> стоят единицы. <tex>{P_\sigma}_{i,k} = 1</tex> значит, что в перестановке <tex>\sigma</tex> на <tex>i</tex> - том месте стоит элемент <tex>k</tex>, и <tex>{P_\pi}_{k,j} = 1</tex> означает что в перестановке <tex>\pi</tex> на <tex>k</tex> - том месте стоит элемент <tex>j</tex>, а <tex>{(P_\sigma P_\pi)}_{i,j} = 1</tex> означает что в перестановке, которой соответствует эта матрица, так же на <tex>i</tex> - том месте стоит элемент <tex>j</tex>. Но также известно, что если умножить перестановку <tex>\sigma</tex>, где на <tex>i</tex> - том месте стоит элемент <tex>k</tex>, на перестановку <tex>\pi</tex>, где на <tex>k</tex> - том месте стоит элемент <tex>j</tex>, то в полученной перестановке <tex>{\sigma \circ \pi}</tex> на <tex>i</tex> - том месте будет стоять элемент <tex>j</tex>. | ||
+ | }} | ||
+ | |||
+ | // разработка | ||
* Для любой матрицы перестановок существует обратная: | * Для любой матрицы перестановок существует обратная: | ||
*: <tex>P_\sigma^{-1} = P_\sigma^T</tex> , где <tex>P^T</tex> - транспонированная матрица <tex>P</tex> | *: <tex>P_\sigma^{-1} = P_\sigma^T</tex> , где <tex>P^T</tex> - транспонированная матрица <tex>P</tex> | ||
+ | |||
* Для любой матрицы перестановок <tex>P</tex> справедливо: | * Для любой матрицы перестановок <tex>P</tex> справедливо: | ||
*: <tex>P^T P = P P^T = E</tex> , где <tex>E</tex> - единичная матрица | *: <tex>P^T P = P P^T = E</tex> , где <tex>E</tex> - единичная матрица | ||
+ | |||
* Произведение матриц перестановок есть матрица перестановок | * Произведение матриц перестановок есть матрица перестановок | ||
+ | |||
* Матрица перестановок <tex>n</tex>-го порядка может быть представлена в виде произведения <tex>(n - 1)</tex> элементарных матриц перестановок | * Матрица перестановок <tex>n</tex>-го порядка может быть представлена в виде произведения <tex>(n - 1)</tex> элементарных матриц перестановок | ||
+ | |||
* Квадрат элементарной матрицы перестановок есть единичная матрица | * Квадрат элементарной матрицы перестановок есть единичная матрица | ||
+ | |||
* Умножение произвольной матрицы <tex>M</tex> на перестановочную соответственно меняет местами её столбцы. | * Умножение произвольной матрицы <tex>M</tex> на перестановочную соответственно меняет местами её столбцы. | ||
+ | |||
* Умножение перестановочной матрицы на произвольную <tex>M</tex> меняет местами строки в <tex>M</tex>. | * Умножение перестановочной матрицы на произвольную <tex>M</tex> меняет местами строки в <tex>M</tex>. | ||
Версия 22:20, 22 декабря 2011
Содержание
Определение
Определение: |
Матрица перестановки — квадратная бинарная матрица, в каждой строке и в каждом столбце которой находится лишь одна единица. |
Определение: |
Если матрица перестановок | получена из единичной матрицы перестановкой местами двух строк (или двух столбцов), то такая матрица называется элементарной матрицей перестановок.
Каждая матрица перестановки размера является матричным представлением перестановки порядка .
Пусть дана перестановка
порядка :Соответствующей матрицей перестановки является матрица
вида:- , где — двоичный вектор длины , -й элемент которого равен единице, а остальные равны нулю.
Пример
Перестановка:
Соответствующая матрица:
Свойства
Утверждение: |
Для любых двух перестановок их матрицы обладают свойством:
|
Доказательство: Рассмотрим эта сумма может быть равна нулю или единице, причем единице в том случае, если в - той строчке на - том столбце матрицы и в - той строчке на - том столбце матрицы стоят единицы. значит, что в перестановке на - том месте стоит элемент , и означает что в перестановке на - том месте стоит элемент , а означает что в перестановке, которой соответствует эта матрица, так же на - том месте стоит элемент . Но также известно, что если умножить перестановку , где на - том месте стоит элемент , на перестановку , где на - том месте стоит элемент , то в полученной перестановке на - том месте будет стоять элемент . |
// разработка
- Для любой матрицы перестановок существует обратная:
- , где - транспонированная матрица
- Для любой матрицы перестановок
- , где - единичная матрица
справедливо:
- Произведение матриц перестановок есть матрица перестановок
- Матрица перестановок -го порядка может быть представлена в виде произведения элементарных матриц перестановок
- Квадрат элементарной матрицы перестановок есть единичная матрица
- Умножение произвольной матрицы на перестановочную соответственно меняет местами её столбцы.
- Умножение перестановочной матрицы на произвольную меняет местами строки в .
Применение
Благодаря последним свойствам, матрицам перестановок нашлось применение в линейной алгебре:
пусть задана матрица перестановки
, которая соответствует перестановке , и матрица ,тогда перемножив получим:
- ,
видно, что вторая и третья строки поменялись местами;
- ,
видно, что второй и третий столбец поменялись местами.