Марковская цепь — различия между версиями
Whiplash (обсуждение | вклад) |
Proshev (обсуждение | вклад) |
||
Строка 43: | Строка 43: | ||
* И.В. Романовский. ''«Дискретный анализ»'' | * И.В. Романовский. ''«Дискретный анализ»'' | ||
+ | |||
+ | [[Категория:Дискретная математика и алгоритмы]] | ||
+ | |||
+ | [[Категория: Марковские цепи ]] |
Версия 23:41, 16 января 2012
Содержание
Определение
Определение: |
Цепь Маркова — процесс, находящийся в одном из При этом, если он находится в состоянии с номером Матрицу , то он перейдет в состояние с вероятностью . называют матрицей переходов. | состояний.
На матрицу переходов накладываются следующие условия:
Такая матрица называется стохастической.
В общем случае для марковской цепи задают вектор
. — вероятность того, что в начале процесса марковская цепь находится в состоянии .Марковскую цепь можно представить в виде графа, в котором вершины — это состояния процесса, а ребра — переходы между состояниями, и на ребре из
в написана вероятность перехода из в , то есть .Состояния
Состояния марковской цепи делятся на два класса: поглощающие (существенные) и непоглощающие (несущественные).
Определение: |
Состояние | называют поглощающим (существенным), если . Все остальные состояния называют непоглощающими (несущественными).
В примере на рисунке поглощающими являются состояния 3 и 4, а непоглощающими — 1 и 2.
Вероятность того, что через
шагов марковская цепь будет находиться в состоянии равнаСмотри также
Литература
- И.В. Романовский. «Дискретный анализ»