Поток минимальной стоимости — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 16: Строка 16:
 
Популярная задача, которая легко сводится к потоку минимальной стоимости - [[Сведение_задачи_о_назначениях_к_задаче_о_потоке_минимальной_стоимости|задача о назначениях]].
 
Популярная задача, которая легко сводится к потоку минимальной стоимости - [[Сведение_задачи_о_назначениях_к_задаче_о_потоке_минимальной_стоимости|задача о назначениях]].
  
== Источники ==
+
== Ссылки ==
*[http://ru.wikipedia.org/wiki/Поток_минимальной_стоимости Википедия]
+
*[http://ru.wikipedia.org/wiki/Поток_минимальной_стоимости Википедия - Поток минимальной стоимости]
 +
*[http://rain.ifmo.ru/cat/view.php/vis/graph-flow-match/min-cost-max-flow-2009 Визуализатор алгоритма нахождения максимального потока минимальной стоимости]
  
  
 
[[Категория: Задача о потоке минимальной стоимости]]
 
[[Категория: Задача о потоке минимальной стоимости]]

Версия 07:22, 27 декабря 2011

Определение задачи

Определение:
Дано число [math]f_0[/math] и транспортная сеть [math]\,G(V,E)[/math] с источником [math]s \in V[/math] и стоком [math]t \in V[/math], где ребра [math](u,v) \in E[/math] имеют пропускную способность [math]\,c(u,v)[/math] и цену [math]\,p(u,v)[/math].

Суть задачи — найти поток f(u, v):

[math]p(f) = \sum_{u,v \in V} p(u,v) \cdot f(u,v) - min [/math].
[math]|f| = \sum_{u,v \in V} f(u,v) = f_0[/math]

Алгоритмы решения

Задача о назначениях

Популярная задача, которая легко сводится к потоку минимальной стоимости - задача о назначениях.

Ссылки