Теорема Форда-Фалкерсона о потоке минимальной стоимости — различия между версиями
Строка 16: | Строка 16: | ||
}} | }} | ||
+ | == Литература == | ||
+ | * Ravindra Ahuja, Thomas Magnanti, James Orlin. Network flows (1993) | ||
[[Категория: Задача о потоке минимальной стоимости]] | [[Категория: Задача о потоке минимальной стоимости]] |
Версия 08:34, 31 декабря 2011
Теорема: |
Пусть Тогда для — поток минимальной стоимости в сети среди потоков величины . — путь минимальной стоимости в остаточной сети. поток — поток минимальной стоимости среди потоков величины , где - поток величины , проходящий по пути . |
Доказательство: |
Пусть лемме о сложении потоков его величина будет равна . — поток минимальной стоимости величины в . Представим , где - поток в остаточной сети . Тогда разность будет потоком в сети и поПо теореме о декомпозиции его можно представить как сумму элементарных потоков вдоль путей и циклов . В этом представлении нет отрицательных циклов, иначе прибавление его к даст поток меньшей стоимости. Если есть положительный цикл, то вычтем его из и получим поток меньшей стоимости. Таким образом для всех циклов. Тогда Отсюда . и поток — минимальный. |
Литература
- Ravindra Ahuja, Thomas Magnanti, James Orlin. Network flows (1993)