Обсуждение:Полукольца и алгебры — различия между версиями
(→Косяк в утверждении) |
|||
Строка 15: | Строка 15: | ||
У меня записано, что надо | У меня записано, что надо | ||
<tex> \bigcup\limits_{n} B_n = B_1 \cup (B_2 \setminus B_1) \cup (B_3 \setminus (B_1 \bigcup B_2) \cup \ldots \cup (B_n \setminus \bigcup\limits_{k = 1}^{n - 1} B_k) \cup \ldots </tex> | <tex> \bigcup\limits_{n} B_n = B_1 \cup (B_2 \setminus B_1) \cup (B_3 \setminus (B_1 \bigcup B_2) \cup \ldots \cup (B_n \setminus \bigcup\limits_{k = 1}^{n - 1} B_k) \cup \ldots </tex> | ||
+ | : Да, и вправду бред был. fixed. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 05:12, 3 января 2012 (MSK) | ||
+ | |||
==И еще== | ==И еще== | ||
надо добавить еще, что объединение множеств тоже входит в алгебру. | надо добавить еще, что объединение множеств тоже входит в алгебру. | ||
<tex>B \cup C = \overline{\overline{B} \cap \overline{C}}</tex> | <tex>B \cup C = \overline{\overline{B} \cap \overline{C}}</tex> | ||
: Это добавлено после определения алгебры. Подписывайтесь, чтоли. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 04:38, 3 января 2012 (MSK) | : Это добавлено после определения алгебры. Подписывайтесь, чтоли. --[[Участник:Dgerasimov|Дмитрий Герасимов]] 04:38, 3 января 2012 (MSK) |
Версия 05:12, 3 января 2012
Определение полукольца
Тут походу должно быть что-то вроде «найдутся такие подмножества, что их дизъюнктное объединение блаблабла», из определения Додонова это вроде не очевидно. --Дмитрий Герасимов 06:23, 21 ноября 2011 (MSK)
- Хотя в той версии, которую сделал я, создаётся ощущение что их должно быть конечное число, а это, наверное, не обязательно
Определение алгебры
В третьей аксиоме, наверное, должно быть
.И, похоже, что все-таки «Из данных аксиом следует, что
и »Плюсаните, если я прав. --Дмитрий Герасимов 05:22, 31 декабря 2011 (MSK)
Косяк в утверждении
У меня записано, что надо
- Да, и вправду бред был. fixed. --Дмитрий Герасимов 05:12, 3 января 2012 (MSK)
И еще
надо добавить еще, что объединение множеств тоже входит в алгебру.
- Это добавлено после определения алгебры. Подписывайтесь, чтоли. --Дмитрий Герасимов 04:38, 3 января 2012 (MSK)