Теорема Форда-Фалкерсона о потоке минимальной стоимости — различия между версиями
м |
|||
Строка 23: | Строка 23: | ||
По [[Теорема о декомпозиции|теореме о декомпозиции]] <tex> g - f</tex> можно представить как сумму элементарных потоков вдоль путей <tex>P_i : s \leadsto t</tex> и циклов <tex>C_i</tex>. В этом представлении нет отрицательных циклов, иначе прибавление его к <tex> f </tex> даст поток меньшей стоимости. Если есть положительный цикл, то вычтем его из <tex> g </tex> и получим поток меньшей стоимости. Таким образом, <tex>p(C_i) = 0</tex> для всех циклов. | По [[Теорема о декомпозиции|теореме о декомпозиции]] <tex> g - f</tex> можно представить как сумму элементарных потоков вдоль путей <tex>P_i : s \leadsto t</tex> и циклов <tex>C_i</tex>. В этом представлении нет отрицательных циклов, иначе прибавление его к <tex> f </tex> даст поток меньшей стоимости. Если есть положительный цикл, то вычтем его из <tex> g </tex> и получим поток меньшей стоимости. Таким образом, <tex>p(C_i) = 0</tex> для всех циклов. | ||
− | Тогда <tex>p(g - f) = \sum\limits_{P_i} p(P_i)\cdot c_f(P_i) \geq p(P) \cdot \sum\limits_{P_i}c_f(P_i) | + | Тогда <tex>p(g - f) = \sum\limits_{P_i} p(P_i)\cdot c_f(P_i) \geq p(P) \cdot \sum\limits_{P_i}c_f(P_i) \ge p(P) \cdot \delta</tex>. |
Отсюда <tex> p(g) \ge p(f) + p(P) \cdot \delta \ge p(g) </tex> и поток <tex>f + \delta \cdot f_P</tex> {{---}} минимальный. | Отсюда <tex> p(g) \ge p(f) + p(P) \cdot \delta \ge p(g) </tex> и поток <tex>f + \delta \cdot f_P</tex> {{---}} минимальный. |
Версия 22:33, 18 января 2012
Лемма (о представлении потоков): |
Пусть и — потоки в сети . Тогда можно представить как сумму , где — поток в остаточной сети . |
Доказательство: |
Рассмотрим произвольное ребро Антисимметричность и закон сохранения потока проверяются аналогично из . . Таким образом, поток через каждое ребро не превосходит пропускной способности остаточной сети. лемме о сложении потоков. |
Теорема: |
Пусть:
Тогда: поток — поток минимальной стоимости среди потоков величины , где — поток величины , проходящий по пути . |
Доказательство: |
Пусть лемме о сложении потоков его величина будет равна . — поток минимальной стоимости величины в . Представим , где — поток в остаточной сети . Тогда разность будет потоком в сети и поПо теореме о декомпозиции можно представить как сумму элементарных потоков вдоль путей и циклов . В этом представлении нет отрицательных циклов, иначе прибавление его к даст поток меньшей стоимости. Если есть положительный цикл, то вычтем его из и получим поток меньшей стоимости. Таким образом, для всех циклов. Тогда Отсюда . и поток — минимальный. |
Литература
- Ravindra Ahuja, Thomas Magnanti, James Orlin. Network flows (1993)