Обсуждение:Суммируемые функции произвольного знака — различия между версиями
| Строка 6: | Строка 6: | ||
<tex> \int\limits_B f = \int\limits_{B_1} f + \int\limits_{B_2} f \le \int\limits_{B_1} M_\varepsilon d \mu + \int\limits_{e_\varepsilon} f \le \ldots </tex> | <tex> \int\limits_B f = \int\limits_{B_1} f + \int\limits_{B_2} f \le \int\limits_{B_1} M_\varepsilon d \mu + \int\limits_{e_\varepsilon} f \le \ldots </tex> | ||
— почему мы здесь внезапно во втором интеграле начинаем интегрирование по e_\varepsilon, а не по B_2? --[[Участник:Dgerasimov|Дмитрий Герасимов]] 02:30, 7 января 2012 (MSK) | — почему мы здесь внезапно во втором интеграле начинаем интегрирование по e_\varepsilon, а не по B_2? --[[Участник:Dgerasimov|Дмитрий Герасимов]] 02:30, 7 января 2012 (MSK) | ||
| − | |||
| − | |||
Версия 02:00, 8 января 2012
Пример с интегралом Дирихле
А откуда мы знаем, что по Лебегу не суммируем? --Дмитрий Герасимов 02:11, 7 января 2012 (MSK)
Доказательство теоремы об абсолютной непрерывности
— почему мы здесь внезапно во втором интеграле начинаем интегрирование по e_\varepsilon, а не по B_2? --Дмитрий Герасимов 02:30, 7 января 2012 (MSK)