Определение интеграла Лебега — различия между версиями
Sementry (обсуждение | вклад) м (→Сравнение с интегралом Римана: опечатка) |
|||
| Строка 101: | Строка 101: | ||
С другой стороны, <tex>f(x) = \begin{cases}0, & x \in \mathbb{Q}\\1, & x \notin \mathbb{Q}\end{cases}, f \notin \mathcal{R}(0; 1)</tex> | С другой стороны, <tex>f(x) = \begin{cases}0, & x \in \mathbb{Q}\\1, & x \notin \mathbb{Q}\end{cases}, f \notin \mathcal{R}(0; 1)</tex> | ||
| − | С другой стороны, она кусочно-постоянная на оси. <tex>\mathbb{Q}</tex>{{---}} измеримое по Лебегу, ибо счётно. Значит, <tex>f</tex>{{---}} измеримо на всей оси, а значит, и на <tex>[0; 1]</tex>. Тогда по | + | С другой стороны, она кусочно-постоянная на оси. <tex>\mathbb{Q}</tex>{{---}} измеримое по Лебегу, ибо счётно. Значит, <tex>f</tex>{{---}} измеримо на всей оси, а значит, и на <tex>[0; 1]</tex>. Тогда по доказанной выше(намного выше <tex>\smile</tex>) теореме, она интегрируема по Лебегу на <tex>[0; 1]</tex>. Однако, по Риману она не интегрируема. Выходит, на вещественной оси интеграл Лебега {{---}} распространение интеграла Римана. |
[[Математический_анализ_2_курс|на главную <<]] [[Некоторые элементарные свойства интеграла Лебега|>>]] | [[Математический_анализ_2_курс|на главную <<]] [[Некоторые элементарные свойства интеграла Лебега|>>]] | ||
[[Категория:Математический анализ 2 курс]] | [[Категория:Математический анализ 2 курс]] | ||
Версия 01:30, 10 января 2012
Есть . Далее, мы всегда предполагаем, что — -конечная и полная.
Пусть — измеримое множество (), , , .
Разобьём на конечное число попарно дизъюнктных измеримых частей:
— дизъюнктные и измеримые. — разбиение.
| Утверждение: |
Существует хотя бы одно разбиение. |
| Вот оно! . Если что, всегда можно предъявить разбиение . |
Строим системы чисел , , они конечны.
| Определение: |
| Верхняя и нижняя суммы Лебега-Дарбу — , . Они аналогичны суммам Дарбу для интеграла Римана. |
| Определение: |
| — разбиения. Если любой отрезок содержится в каком-то отрезке , то мельче , . |
| Лемма: |
1.
2. , 3. |
| Доказательство: |
|
Доказательство свойств сумм Лебега-Дарбу аналогично доказательству свойств Дарбу из первого семестра курса матанализа. Критерий существования определённого интеграла#Суммы Дарбу TODO: Наверно, надо добавить их сюда. |
Тогда, если определить , , то из леммы следует: .
| Определение: |
| Если , то — интегрируема по Лебегу на , общее значение этих чисел — интеграл Лебега, . |
| Теорема: |
Пусть — измерима и ограничена на , . Тогда — интегрируема по Лебегу на . |
| Доказательство: |
|
— ограничена, значит . Разобьём на равных частей. , . В силу измеримости , эти множества измеримы. , — дизъюнктны. Итак, мы получили разбиение . Теперь убедимся, что пределы сумм Лебега-Дарбу на нем совпадают: , , поэтому
— произвольное, натуральное. Устремляя к бесконечности, получаем требуемое. |
Замечание. На самом деле, можно доказать и обратное. Факт существования интеграла Лебега функции необходимо влечёт её измеримость.
Сравнение с интегралом Римана
Теперь сравним интеграл Римана по отрезку с интегралом Лебега по тому же самому отрезку.
| Теорема: |
. Иначе говоря, существует интеграл Лебега . |
| Доказательство: |
|
Раз функция интегрируема по Риману, то между нижней и верхней суммами Дарбу можно вставить только одно число — интеграл Римана. Для дальнейших построений воспользуемся тем, что если если берётся по убывающей серии подмножеств, то он не может убывать. Аналогично, не может возрастать. Так как интеграл Римана — общее значение соответствующих граней нижней и верхних сумм Дарбу, то:
Имея теперь разбиение отрезка точками, создадим на его базе разбиение отрезка на попарно дизъюнктные множества: — разбиение отрезка на попарно дизъюнктные измеримые по Лебегу множества. Значит, так как , и , приходим к неравенствам
Сопоставляя это с прошлым неравенством, приходим к выводу, что Здесь только одна переменная — . При победа, . |
С другой стороны,
С другой стороны, она кусочно-постоянная на оси. — измеримое по Лебегу, ибо счётно. Значит, — измеримо на всей оси, а значит, и на . Тогда по доказанной выше(намного выше ) теореме, она интегрируема по Лебегу на . Однако, по Риману она не интегрируема. Выходит, на вещественной оси интеграл Лебега — распространение интеграла Римана.