Задача о двух конвертах — различия между версиями
Yurik (обсуждение | вклад) |
Yurik (обсуждение | вклад) |
||
Строка 8: | Строка 8: | ||
|id=идентификатор (необязательно), пример: def1. | |id=идентификатор (необязательно), пример: def1. | ||
|neat = 0 - параметр нужен для того, чтобы определение не растягивалось на всю страницу(не обязательно) | |neat = 0 - параметр нужен для того, чтобы определение не растягивалось на всю страницу(не обязательно) | ||
− | |definition=Есть два неразличимых конверта с деньгами. В обоих конвертах находится некая степень двойки денег, причем в одном находится сумма в два раза большая, чем во втором. Величина этой суммы неизвестна. Конверты дают двум игрокам. Каждый из них может открыть свой конверт и пересчитать в нём деньги. После этого игроки должны решить: стоит ли обменять свой конверт на чужой? Оба игрока рассуждают следующим образом. Я вижу в своём конверте сумму X. | + | |definition=Есть два неразличимых конверта с деньгами. В обоих конвертах находится некая степень двойки денег, причем в одном находится сумма в два раза большая, чем во втором. Величина этой суммы неизвестна. Конверты дают двум игрокам. Каждый из них может открыть свой конверт и пересчитать в нём деньги. После этого игроки должны решить: стоит ли обменять свой конверт на чужой? Оба игрока рассуждают следующим образом. Я вижу в своём конверте сумму X. Если Х = 1, то менять точно выгодно. если Х другой, то в чужом конверте равновероятно может находиться <tex> 2X </tex> или <tex> X \over 2</tex>. Поэтому, если я поменяю конверт, то у меня в среднем будет <tex> \tfrac{(2X + \tfrac{X}{2})}{2} = \tfrac{5}{4} X </tex>, т.е. больше, чем сейчас. Значит обмен выгоден. Однако обмен не может быть выгоден обоим игрокам. Где в их рассуждениях кроется ошибка? |
}} | }} | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | В данном рассуждении ошибка кроется в предположении о том, что в другом конверте может ''равновероятно'' находится <tex> 2X </tex> или <tex> X \over 2</tex>. В действительности этого не может быть. | ||
+ | |||
+ | |||
+ | |||
+ | <tex>\Box</tex> | ||
+ | Предположим от противного, что существует вероятностное распределение <tex>f(x)</tex>, определенное на степенях двойки, причем значения этой функции на соседних степенях равны. | ||
+ | Тогда значения этой функции вообще говоря должны быть равны на всех степенях, т.е. <tex>f(x)</tex> постоянна. Но <tex>\displaystyle \sum_{i=1}^\infty f(2^i) = 1</tex> (т.к это вероятностное распределение) - противоречие.<tex>\blacksquare</tex> | ||
+ | |||
+ | Есть | ||
[[Категория: Теория вероятности]] | [[Категория: Теория вероятности]] |
Версия 06:28, 12 января 2012
СТАТЬЯ НЕ ЗАКОНЧЕНА! Задача (Парадокс) двух конвертов - известный математический парадокс теории вероятностей.
Формулировок этого парадокса достаточно много. Приведу несколько. Вот самый известный из них.
Определение:
Есть два неразличимых конверта с деньгами. В обоих конвертах находится некая степень двойки денег, причем в одном находится сумма в два раза большая, чем во втором. Величина этой суммы неизвестна. Конверты дают двум игрокам. Каждый из них может открыть свой конверт и пересчитать в нём деньги. После этого игроки должны решить: стоит ли обменять свой конверт на чужой? Оба игрока рассуждают следующим образом. Я вижу в своём конверте сумму X. Если Х = 1, то менять точно выгодно. если Х другой, то в чужом конверте равновероятно может находиться
или . Поэтому, если я поменяю конверт, то у меня в среднем будет , т.е. больше, чем сейчас. Значит обмен выгоден. Однако обмен не может быть выгоден обоим игрокам. Где в их рассуждениях кроется ошибка?
В данном рассуждении ошибка кроется в предположении о том, что в другом конверте может равновероятно находится или . В действительности этого не может быть.
Предположим от противного, что существует вероятностное распределение , определенное на степенях двойки, причем значения этой функции на соседних степенях равны. Тогда значения этой функции вообще говоря должны быть равны на всех степенях, т.е. постоянна. Но (т.к это вероятностное распределение) - противоречие.
Есть