Лемма о дедукции, полнота исчисления высказываний — различия между версиями
Phil (обсуждение | вклад) |
|||
Строка 11: | Строка 11: | ||
Замечание: в этом определении появляются дополнительные предположения, поэтому речь идет именно о ''выводе'', а не о ''доказательстве''. Очевидно, что, если <tex>\Gamma = \varnothing</tex>, то <tex>\Gamma \vdash \alpha</tex> соответствует <tex>\vdash \alpha</tex>. | Замечание: в этом определении появляются дополнительные предположения, поэтому речь идет именно о ''выводе'', а не о ''доказательстве''. Очевидно, что, если <tex>\Gamma = \varnothing</tex>, то <tex>\Gamma \vdash \alpha</tex> соответствует <tex>\vdash \alpha</tex>. | ||
+ | |||
+ | {{Теорема | ||
+ | |author= | ||
+ | Modus Ponens(M.P.) | ||
+ | |statement= | ||
+ | Пусть справедливо <tex>\alpha \rightarrow \beta</tex>, так же справедливо <tex>\alpha</tex>. Тогда по правилу M.P. справедливо <tex>\beta</tex> | ||
+ | }} | ||
{{Теорема | {{Теорема | ||
Строка 18: | Строка 25: | ||
Возьмем <tex>\delta_1, ..., \delta_m</tex> --- вывод формулы <tex>\alpha \rightarrow \beta</tex>. В ней <tex>\delta_m = \alpha \rightarrow \beta</tex>. Добавим <tex>\delta_{m+1} = \alpha</tex> --- это добавленная аксиома, и <tex>\delta_{m+2} = \beta</tex>, получим вывод <tex>\beta</tex> как М.Р. <tex>\delta_m</tex> и <tex>\delta_{m+1}</tex>. | Возьмем <tex>\delta_1, ..., \delta_m</tex> --- вывод формулы <tex>\alpha \rightarrow \beta</tex>. В ней <tex>\delta_m = \alpha \rightarrow \beta</tex>. Добавим <tex>\delta_{m+1} = \alpha</tex> --- это добавленная аксиома, и <tex>\delta_{m+2} = \beta</tex>, получим вывод <tex>\beta</tex> как М.Р. <tex>\delta_m</tex> и <tex>\delta_{m+1}</tex>. | ||
}} | }} | ||
− | |||
− | |||
{{Лемма | {{Лемма |
Версия 22:43, 12 января 2012
Теорема о дедукции
Будем обозначать буквами
списки формул (возможно, пустые).
Определение: |
Пусть | - некоторые список высказываний, - некоторое высказывание в исчислении . Тогда будем говорить, что выводится из (запись: ), если существует доказательство в исчислении , где - это с добавленными формулами из . Элементы называются допущениями, предположениями, или гипотезами.
Замечание: в этом определении появляются дополнительные предположения, поэтому речь идет именно о выводе, а не о доказательстве. Очевидно, что, если , то соответствует .
Теорема (Modus Ponens(M.P.)): |
Пусть справедливо , так же справедливо . Тогда по правилу M.P. справедливо |
Теорема: |
Пусть справедливо . Тогда справедливо |
Доказательство: |
Возьмем | --- вывод формулы . В ней . Добавим --- это добавленная аксиома, и , получим вывод как М.Р. и .
Лемма: |
Доказательство: |
|