Тестовая страница — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
[[Категория: Удалить]]
+
<wikitex>
 +
{{TODO|t=НЕ ОЧЕНЬ ПОНИМАЮ, ЗАЧЕМ ВООБЩЕ ЭТО УТСВЕРЖДЕНИЕ ТУТ}}
 +
{{Теорема
 +
|statement=
 +
Если $f$ — функция ограниченной вариации ($f \in \bigvee(a, b)$), то ее можно представить в виде разности монотонно неубывающих функций ($f = f_1 - f_2$).
 +
|proof=
 +
Возьмем в качестве $f_1$ функцию $f_1(x) = \bigvee\limits_a^x (f)$, тогда по аддитивности она будет не убывать.
 +
Определим как $f_2$ функцию $f_2(x) = f_1(x) - f(x)$. Докажем, что она монотонно не убывает.
 +
$a < x_1 < x_2 < b$. Надо доказать, что $f_1(x_1) - f(x_1) \le f_1(x_2) - f(x_2)$, или что $f(x_2) - f(x_1) \le f_1(x_2) - f_1(x_1) = \bigvee\limits_{x_1}^{x_2} (f)$ (используем утверждение 1).
 +
Но действительно $f(x_2) - f(x_1) \le | f(x_2) - f(x_1) | \le \bigvee\limits_{x_1}^{x_2} (f)$, ч. т. д.
 +
}}
  
===Курс===
+
</wikitex>
 
 
Странная нумерация...
 
 
 
{{TODO| t=отследить соответствие частей лекций и вопросов к экзамену}}
 
 
 
[[Лекция 2]]
 
 
 
[[Лекция 3]]
 
 
 
[[Лекция 4]]
 
 
 
[[Лекция 5]]
 
 
 
[[Лекция 6]]
 
 
 
[[Лекция 7]]
 
 
 
[[Лекция 8]]
 
 
 
[[Лекция 9]]
 
 
 
[[Лекция 10]]
 
 
 
[[Решение задач по логике]]
 
 
 
===Экзамен===
 
[[Вопросы к экзамену по математической логике за 3 семестр]]
 
 
 
[[Краткие Ответы]]
 

Версия 16:30, 22 июня 2012

<wikitex>

TODO: НЕ ОЧЕНЬ ПОНИМАЮ, ЗАЧЕМ ВООБЩЕ ЭТО УТСВЕРЖДЕНИЕ ТУТ

Теорема:
Если $f$ — функция ограниченной вариации ($f \in \bigvee(a, b)$), то ее можно представить в виде разности монотонно неубывающих функций ($f = f_1 - f_2$).
Доказательство:
[math]\triangleright[/math]

Возьмем в качестве $f_1$ функцию $f_1(x) = \bigvee\limits_a^x (f)$, тогда по аддитивности она будет не убывать. Определим как $f_2$ функцию $f_2(x) = f_1(x) - f(x)$. Докажем, что она монотонно не убывает. $a < x_1 < x_2 < b$. Надо доказать, что $f_1(x_1) - f(x_1) \le f_1(x_2) - f(x_2)$, или что $f(x_2) - f(x_1) \le f_1(x_2) - f_1(x_1) = \bigvee\limits_{x_1}^{x_2} (f)$ (используем утверждение 1).

Но действительно $f(x_2) - f(x_1) \le
[math]\triangleleft[/math]

</wikitex>