Представление простых в виде суммы двух квадратов — различия между версиями
Proshev (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
{{В разработке}} | {{В разработке}} | ||
Версия 08:35, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Лемма (Вильсон): |
Если — простое, то делится на . |
Доказательство: |
При Из этого следует, что множество доказательство очевидно. Докажем для . Так как - поле, то для каждого есть такое , что . Может оказаться, что для некоторых выполнено . Найдём все такие , что . . Значит или . разбивается на пары такие, что произведение чисел внутри каждой из них сравнимо с по модулю . Таким образом . Но . Следовательно |
Теорема: |
Если , то оно представимо в виде суммы двух квадратов. |
Доказательство: |
Из леммы Вильсона Рассмотрим пары чисел . Следовательно . Теперь говорим, что , тогда . такие, что . Число таких пар равно . Значит по крайней мере для двух различных пар остатки от деления на будут одинаковыми, т.е. число , где , будет делится на . При этом . Но тогда число делится на . Учитывая, что , получим, что , где . Но , а значит . |
Теорема: |
Если , то оно представимо в виде суммы двух квадратов. (В форме алгоритма) |
Доказательство: |
Возьмём такое, что .Запустим алгоритм Евклида для чисел . Получим последовательность чисел . Утверждается, что существуют такое , что . Докажем это.Разложим в цепную дробь , при этом сделав чётным. Для этого разложения верноТакже Запишем свойство цепных дробей. . По тому, какое мы взяли получаем . Так как взяли чётную , тоНа данном этапе имеем : Распишем дробь . И Проделав так далее, получаем . , следовательно . По вышесказанному . Теперь возьмём . Так как взаимно просты, то числитель и знаменатель взаимно просты, следовательно . Что и требовалось доказать. |