Граф блоков-точек сочленения — различия между версиями
Proshev (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Пусть [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|граф]] <tex>G</tex> связен. Обозначим <tex>A_1...A_n</tex> - блоки, а <tex>a_1...a_m</tex> - [[Точка сочленения, эквивалентные определения|точки сочленения]] <tex>G</tex>. | + | Пусть [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|граф]] <tex>G</tex> связен. Обозначим <tex>A_1...A_n</tex> {{---}} блоки, а <tex>a_1...a_m</tex> {{---}} [[Точка сочленения, эквивалентные определения|точки сочленения]] <tex>G</tex>. |
Построим двудольный граф <tex>T</tex>, поместив <tex>A_1...A_n</tex> и <tex>a_1...a_m</tex> в различные его доли. Если точка сочленения принадлежит блоку, проведем между ними ребро. Полученный граф <tex>T</tex> называют '''графом блоков-точек сочленения''' графа <tex>G</tex>. | Построим двудольный граф <tex>T</tex>, поместив <tex>A_1...A_n</tex> и <tex>a_1...a_m</tex> в различные его доли. Если точка сочленения принадлежит блоку, проведем между ними ребро. Полученный граф <tex>T</tex> называют '''графом блоков-точек сочленения''' графа <tex>G</tex>. | ||
}} | }} | ||
Строка 9: | Строка 9: | ||
|id=lemma1 | |id=lemma1 | ||
|statement= | |statement= | ||
− | В определении, приведенном выше, <tex>T</tex> - дерево. | + | В определении, приведенном выше, <tex>T</tex> {{---}} дерево. |
|proof= | |proof= | ||
Достаточно показать, что в <tex>T</tex> нет циклов. | Достаточно показать, что в <tex>T</tex> нет циклов. | ||
− | Пусть <tex>A_i, a_k, A_j: a_k \in A_i, A_j</tex> - последовательные вершины <tex>T</tex>, лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая <tex>A_i</tex> и <tex>A_j</tex> и не содержащая <tex>a_k</tex>. По ней можно проложить путь в <tex>G</tex> (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине <tex>a_k</tex>, получив цикл, что противоречит тому, что <tex>a_k</tex> - точка сочленения. | + | Пусть <tex>A_i, a_k, A_j: a_k \in A_i, A_j</tex> {{---}} последовательные вершины <tex>T</tex>, лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая <tex>A_i</tex> и <tex>A_j</tex> и не содержащая <tex>a_k</tex>. По ней можно проложить путь в <tex>G</tex> (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине <tex>a_k</tex>, получив цикл, что противоречит тому, что <tex>a_k</tex> {{---}} точка сочленения. |
}} | }} | ||
==Литература== | ==Литература== |
Версия 07:52, 3 февраля 2012
Определение: |
Пусть граф связен. Обозначим — блоки, а — точки сочленения . Построим двудольный граф , поместив и в различные его доли. Если точка сочленения принадлежит блоку, проведем между ними ребро. Полученный граф называют графом блоков-точек сочленения графа . |
Лемма: |
В определении, приведенном выше, — дерево. |
Доказательство: |
Достаточно показать, что в Пусть нет циклов. — последовательные вершины , лежащие на цикле. Тогда существует последовательность точек сочленения и блоков, соединяющая и и не содержащая . По ней можно проложить путь в (можем переходить из блока в блок по точке сочленения и из одной части блока в другую) и замкнуть его в вершине , получив цикл, что противоречит тому, что — точка сочленения. |
Литература
М.О.Асанов, В.А.Баранский, В.В.Расин ДИСКРЕТНАЯ МАТЕМАТИКА: ГРАФЫ, МАТРОИДЫ, АЛГОРИТМЫ