M-сводимость — различия между версиями
Bloof (обсуждение | вклад) |
Kirelagin (обсуждение | вклад) |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
− | |definition=Множество <tex>A</tex> '''m-сводится''' ко множеству <tex>B</tex>, если существует всюду определённая вычислимая функция <tex>f: | + | |definition=Множество <tex>A</tex> '''m-сводится''' ко множеству <tex>B</tex>, если существует всюду определённая вычислимая функция <tex>f : x\in A\Leftrightarrow f(x)\in B</tex>, то есть <tex>f(A) \subset B</tex> и <tex>f(\overline{A}) \subset \overline{B}</tex>. Обозначение: <tex>A\le_{m}B</tex>. |
}} | }} | ||
{{Определение | {{Определение |
Версия 23:07, 19 января 2012
Определение: |
Множество | m-сводится ко множеству , если существует всюду определённая вычислимая функция , то есть и . Обозначение: .
Определение: |
m-эквивалентно , если и . Обозначение: . |
Свойства
-
- Доказательство: .
.
- Если
- Доказательство: Пусть — программа-разрешитель для . Тогда для любого разрешитель должен вернуть значение .
и разрешимо, то разрешимо.
- Если
- Доказательство: Аналогично предыдущему свойству.
и перечислимо, то перечислимо.
- Если
- Доказательство: Если и , то m-сводящая функция выглядит так .
и , то .
Лемма: |
Если и неразрешимо, то неразрешимо. |
Доказательство: |
Следует из второго свойства. |
Литература
- Верещагин Н., Шень А. — Вычислимые функции, 2-е изд. МЦНМО, 2002. ISBN 5-900916-36-7
- P. Odifreddi — Classical recursion theory. Elsivier, 1992. ISBN 0-444-87295-7