Первообразные корни — различия между версиями
м (страница помечена как страница в разработке) |
Haliullin (обсуждение | вклад) (→Количество первообразных корней) |
||
Строка 2: | Строка 2: | ||
==Первообразные корни== | ==Первообразные корни== | ||
− | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | + | Вычет <tex>g</tex> называется '''первообразным корнем''' по модулю <tex>n</tex>, если <tex>ord(g)= \phi(n)</tex>. | |
}} | }} | ||
Где <tex>ord(n)</tex> — [[порядок числа]] <tex>n</tex>, а <tex>\phi(n)</tex> — [[функция Эйлера]].<br /> | Где <tex>ord(n)</tex> — [[порядок числа]] <tex>n</tex>, а <tex>\phi(n)</tex> — [[функция Эйлера]].<br /> | ||
− | + | {{Теорема | |
− | + | |id=t | |
+ | |statement= | ||
+ | Пусть <math>g</math> - первообразный корень по модулю <math>p</math><tex>\in\mathbb{P}</tex>. Тогда <math>g</math><sup>a</sup> - ''первообразный корень по модулю <math>p</math> <math>\Leftrightarrow</math> НОД<math>(a;p-1)=1</math>.''<br> | ||
+ | |proof= | ||
Так как g<sup>a</sup> - первообразный корень, значит (g<sup>a</sup>)<sup>φ(p)</sup>=1, но p<tex>\in\mathbb{P}</tex>, поэтому φ(p)=p-1, значит (g<sup>a</sup>)<sup>p-1</sup>=1, и это же справедливо для g: g<sup>p-1</sup>=1. Пусть НОД(a;p-1)=k, k>1, тогда <math>1=g^{p-1}=(g^{p-1})^{\frac{a}{k}}=(g^{\frac{p-1}{k}})^a=(g^a)^{\frac{p-1}{k}}</math>. Но, по определению ord, <math>p-1</math> - минимальная степень, в которую следует возвести <math>g^a</math>, чтобы получить единицу, а <math>\frac{p-1}{k}<p-1</math>. Получили противоречие, теорема доказана. | Так как g<sup>a</sup> - первообразный корень, значит (g<sup>a</sup>)<sup>φ(p)</sup>=1, но p<tex>\in\mathbb{P}</tex>, поэтому φ(p)=p-1, значит (g<sup>a</sup>)<sup>p-1</sup>=1, и это же справедливо для g: g<sup>p-1</sup>=1. Пусть НОД(a;p-1)=k, k>1, тогда <math>1=g^{p-1}=(g^{p-1})^{\frac{a}{k}}=(g^{\frac{p-1}{k}})^a=(g^a)^{\frac{p-1}{k}}</math>. Но, по определению ord, <math>p-1</math> - минимальная степень, в которую следует возвести <math>g^a</math>, чтобы получить единицу, а <math>\frac{p-1}{k}<p-1</math>. Получили противоречие, теорема доказана. | ||
− | * | + | *Теперь докажем обратную теорему: |
Пусть существует k такое, что <math>g^{a\cdot k}=1</math>, и <math>k<p-1</math>. Но <math>g^{p-1}=1</math>, значит <math>g^{a\cdot k}=g^{p-1}</math>. Следовательно либо <math>(a*k) \vdots (p-1)</math>, либо <math>(p-1) \vdots (a*k)</math>. Но по определению первообразного корня, и ord, <math>p-1 \leqslant a*k</math>, то есть <math>(a*k) \vdots (p-1)</math>, а так как НОД<math>(a; p-1)=1</math>, то <math>k \vdots (p-1) \Rightarrow p-1 \leqslant k</math>, что противоречит нашему предположению. Обратная теорема доказана. | Пусть существует k такое, что <math>g^{a\cdot k}=1</math>, и <math>k<p-1</math>. Но <math>g^{p-1}=1</math>, значит <math>g^{a\cdot k}=g^{p-1}</math>. Следовательно либо <math>(a*k) \vdots (p-1)</math>, либо <math>(p-1) \vdots (a*k)</math>. Но по определению первообразного корня, и ord, <math>p-1 \leqslant a*k</math>, то есть <math>(a*k) \vdots (p-1)</math>, а так как НОД<math>(a; p-1)=1</math>, то <math>k \vdots (p-1) \Rightarrow p-1 \leqslant k</math>, что противоречит нашему предположению. Обратная теорема доказана. | ||
− | + | }} | |
− | + | {{Теорема | |
+ | |about=О количестве первообразных корней | ||
+ | |statement=Количество различных первообразных корней по модулю p равно φ(p-1). | ||
+ | |proof= | ||
Пусть g - первообразный корень.<br> | Пусть g - первообразный корень.<br> | ||
Во-первых, при <math>a=k*(p-1)+b \text{, }b<p-1 \colon g^a=(g^{p-1})^{k}*g^b=1\cdot g^{b}</math>. Таким образом есть смысл рассматривать только первообразные корни, образованные из исходного, путем возведения в степень не выше <math>p-1</math>.<br> | Во-первых, при <math>a=k*(p-1)+b \text{, }b<p-1 \colon g^a=(g^{p-1})^{k}*g^b=1\cdot g^{b}</math>. Таким образом есть смысл рассматривать только первообразные корни, образованные из исходного, путем возведения в степень не выше <math>p-1</math>.<br> | ||
Во-вторых, исходный первообразный корень существует, так как мультипликативная группа поля вычетов <math>\mathbb{Z}/p \mathbb{Z}</math> циклична (то есть <math>\exists a\in\mathbb{Z}/p\mathbb{Z}\colon\forall b\in\mathbb{Z}/p\mathbb{Z} \text{ } \exists k\colon a^k=b</math>).<br> | Во-вторых, исходный первообразный корень существует, так как мультипликативная группа поля вычетов <math>\mathbb{Z}/p \mathbb{Z}</math> циклична (то есть <math>\exists a\in\mathbb{Z}/p\mathbb{Z}\colon\forall b\in\mathbb{Z}/p\mathbb{Z} \text{ } \exists k\colon a^k=b</math>).<br> | ||
По доказанной обратной теореме <math>\forall a \colon с (a \text{; } p-1)=1 \Rightarrow g^a</math> - первообразный корень. С другой стороны для любого другого a, по прямой теореме <math>g^a</math> не является первообразным корнем. Но по определению <math>\varphi(p-1)</math> равно количеству <math>a \colon </math> НОД <math>(a;p-1)=1</math>. Очевидно, для всех <math>a<p-1\text{, }g^a</math> различны. Теорема доказана. | По доказанной обратной теореме <math>\forall a \colon с (a \text{; } p-1)=1 \Rightarrow g^a</math> - первообразный корень. С другой стороны для любого другого a, по прямой теореме <math>g^a</math> не является первообразным корнем. Но по определению <math>\varphi(p-1)</math> равно количеству <math>a \colon </math> НОД <math>(a;p-1)=1</math>. Очевидно, для всех <math>a<p-1\text{, }g^a</math> различны. Теорема доказана. | ||
+ | }} | ||
===Теорема о существовании первообразных корней по модулям <math>4 \text{, }p^n \text{, }2 \cdot p^n</math>=== | ===Теорема о существовании первообразных корней по модулям <math>4 \text{, }p^n \text{, }2 \cdot p^n</math>=== |
Версия 23:52, 27 июня 2010
Эта статья находится в разработке!
Первообразные корни
Определение: |
Вычет | называется первообразным корнем по модулю , если .
Где — порядок числа , а — функция Эйлера.
Теорема: |
Пусть - первообразный корень по модулю . Тогда a - первообразный корень по модулю НОД . |
Доказательство: |
Так как ga - первообразный корень, значит (ga)φ(p)=1, но p , поэтому φ(p)=p-1, значит (ga)p-1=1, и это же справедливо для g: gp-1=1. Пусть НОД(a;p-1)=k, k>1, тогда . Но, по определению ord, - минимальная степень, в которую следует возвести , чтобы получить единицу, а . Получили противоречие, теорема доказана.
|
Теорема (О количестве первообразных корней): |
Количество различных первообразных корней по модулю p равно φ(p-1). |
Доказательство: |
Пусть g - первообразный корень. |