Алгоритм масштабирования потока — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Алгоритм)
Строка 1: Строка 1:
 
== Алгоритм ==
 
== Алгоритм ==
 
Пусть дана [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|сеть]] <tex> G </tex>, все ребра которой имеют целочисленную пропускную способность. Обозначим за <tex> U </tex> максимальную пропускную способность: <tex> U = \max\limits_{(u, v) \in E} c(u, v) </tex>.
 
Пусть дана [[Определение_сети,_потока#.D0.9E.D0.BF.D1.80.D0.B5.D0.B4.D0.B5.D0.BB.D0.B5.D0.BD.D0.B8.D0.B5_.D1.81.D0.B5.D1.82.D0.B8|сеть]] <tex> G </tex>, все ребра которой имеют целочисленную пропускную способность. Обозначим за <tex> U </tex> максимальную пропускную способность: <tex> U = \max\limits_{(u, v) \in E} c(u, v) </tex>.
 +
 +
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным.
  
 
Если записать пропускную способность любого ребра в двоичном виде, то длина полученной битовой последовательности не будет превышать <tex> \lfloor \log_2 U \rfloor + 1 = n + 1 </tex> бит, а значение пропускной способности определяется формулой:
 
Если записать пропускную способность любого ребра в двоичном виде, то длина полученной битовой последовательности не будет превышать <tex> \lfloor \log_2 U \rfloor + 1 = n + 1 </tex> бит, а значение пропускной способности определяется формулой:
 
<tex> c(u, v) = \sum\limits_{i = 0}^n a_i(u, v) \times 2^i, a_i(u, v) \in \{0, 1\} </tex>.
 
<tex> c(u, v) = \sum\limits_{i = 0}^n a_i(u, v) \times 2^i, a_i(u, v) \in \{0, 1\} </tex>.
 
Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным.
 
  
 
Методом [[Алгоритм_Форда-Фалкерсона,_реализация_с_помощью_поиска_в_глубину|Форда-Фалкерсона]] находим поток <tex> f_0 </tex> для сети <tex> G_0 </tex> с урезанными пропускными способностями <tex> c_0(u, v) = a_n(u, v) </tex>.
 
Методом [[Алгоритм_Форда-Фалкерсона,_реализация_с_помощью_поиска_в_глубину|Форда-Фалкерсона]] находим поток <tex> f_0 </tex> для сети <tex> G_0 </tex> с урезанными пропускными способностями <tex> c_0(u, v) = a_n(u, v) </tex>.

Версия 22:10, 25 февраля 2012

Алгоритм

Пусть дана сеть [math] G [/math], все ребра которой имеют целочисленную пропускную способность. Обозначим за [math] U [/math] максимальную пропускную способность: [math] U = \max\limits_{(u, v) \in E} c(u, v) [/math].

Идея алгоритма заключается в нахождении путей с высокой пропускной способностью в первую очередь, чтобы сразу сильно увеличивать поток по ним, а затем по всем остальным.

Если записать пропускную способность любого ребра в двоичном виде, то длина полученной битовой последовательности не будет превышать [math] \lfloor \log_2 U \rfloor + 1 = n + 1 [/math] бит, а значение пропускной способности определяется формулой: [math] c(u, v) = \sum\limits_{i = 0}^n a_i(u, v) \times 2^i, a_i(u, v) \in \{0, 1\} [/math].

Методом Форда-Фалкерсона находим поток [math] f_0 [/math] для сети [math] G_0 [/math] с урезанными пропускными способностями [math] c_0(u, v) = a_n(u, v) [/math]. Добавим следующий бит и находим следующее приближение для графа [math] G_1 [/math] с новыми пропускными способностями [math] c_1(u, v) = 2 a_n(u, v) + a_{n - 1}(u, v) - 2 f_0(u, v) [/math].

После [math] n + 1 [/math] итерации получим ответ к задаче, так как [math] c_{n}(u, v) = c(u, v) [/math].

Оценка времени работы

Утверждение:
Время работы алгоритма — [math] O(E^2 \log U) [/math].
[math]\triangleright[/math]

Докажем, что время работы каждой итерации — [math] O(E^2) [/math].

Лемма:
Время работы первой итерации алгоритма — [math] O(E^2) [/math].
Доказательство:
[math]\triangleright[/math]
На первом шаге ребра имеют пропускную способность [math] 1 [/math]. Значит, [math] |f_0| \leq V [/math]. Поиск каждого дополнительного пути требует [math] O(E) [/math] времени, а их количество не больше [math] V [/math]. Итоговое время работы первой итерации — [math] O(VE) \leq O(E^2) [/math].
[math]\triangleleft[/math]
Лемма:
Время работы второй итерации алгоритма — [math] O(E^2) [/math].
Доказательство:
[math]\triangleright[/math]
Разрез [math] \langle A, \overline{A} \rangle [/math].

Пусть вершина [math] s [/math]источник графа, вершина [math] t [/math]сток. Дополняющая сеть [math] G_{0_{f_0}} [/math]несвязна. Обозначим за [math] A [/math] компоненту связности графа, содержащую вершину [math] s [/math]. Тогда [math] t \notin A [/math]. Источник и сток лежат в разных компонентах связности, значит [math] c_{0_{f_0}}(A, \overline{A}) = c_0(A, \overline{A}) - f_0(A, \overline{A}) = 0 [/math].

Следовательно, в сети [math] G_1 [/math] с пропускными способностями [math] c_1 [/math]: [math] \forall u \in A, v \in \overline{A} \colon c_1(u, v) \leq 1 [/math].

Рассмотрим максимальный поток [math] f'_1 [/math] в сети [math] G_1 [/math]. [math] \langle A, \overline{A} \rangle [/math]разрез, значит: [math] |f'_1| = f'_1(A, \overline{A}) \leq c(A, \overline{A}) \leq E, f_1 = f_0 + f'_1 [/math].

Пропускная способность каждого дополняющего пути не меньше [math] 1 [/math], а поиск каждого занимает [math] O(E) [/math] времени. Значит, итоговое время работы — [math] O(E^2) [/math].
[math]\triangleleft[/math]
Оценка времени работы остальных итераций доказывается аналогично второму случаю. Количество итераций — [math] O(\log U) [/math]. Значит, общее время работы алгоритма — [math] O(E^2 \log U) [/math].
[math]\triangleleft[/math]

Литература