Предикат определения положения точек относительно друг друга — различия между версиями
Proshev (обсуждение | вклад) |
Proshev (обсуждение | вклад) |
||
Строка 31: | Строка 31: | ||
Рассмотрим это выражение в дабловой арифметике. Обозначим за <tex>F(p_1, p_2, \ldots , p_n) = (1 + \delta_{p_1}) \cdot (1 + \delta_{p_2}) \cdot \ldots \cdot (1 + \delta_{p_n})</tex> | Рассмотрим это выражение в дабловой арифметике. Обозначим за <tex>F(p_1, p_2, \ldots , p_n) = (1 + \delta_{p_1}) \cdot (1 + \delta_{p_2}) \cdot \ldots \cdot (1 + \delta_{p_n})</tex> | ||
− | <tex>\tilde{T} = (y_1 \otimes r_2 \oplus y_2 \otimes r_1)(r_3 \oplus r_4) \ominus (y_3 \otimes r_4 \oplus y_4 \otimes r_3)(r_1 \oplus r_2)</tex> | + | <tex>\tilde{T} = (y_1 \otimes r_2 \oplus y_2 \otimes r_1)(r_3 \oplus r_4) \ominus (y_3 \otimes r_4 \oplus y_4 \otimes r_3)(r_1 \oplus r_2) =</tex> |
+ | |||
+ | <tex>= [(y_1 \cdot r_2 \cdot F(1,2) + y_2 \cdot r_1 \cdot F(3,4))(r_3+r_4) \cdot F(5,6,7) -</tex> | ||
+ | |||
+ | <tex>- (y_3 \cdot r_4 \cdot F(8,9) + y_4 \cdot r_3 \cdot F(10,11))(r_1+r_2) \cdot F(12,13,14)] \cdot F(15)</tex> | ||
[[Категория: Вычислительная геометрия]] | [[Категория: Вычислительная геометрия]] |
Версия 21:32, 22 февраля 2012
Эта статья находится в разработке!
Пусть даны две пары касающихся окружностей
, , , . Положим, что и .Задача: определить взаимное расположение точек касания данных окружностей.
Пусть
- точка внешнего касания окружностей и .Точка
- точка внешнего касания окружностей и .Определим углы
.- угол между отрезком, соединяющим центры окружностей и , и осью .
- угол между отрезком, соединяющим центры окружностей и , и осью .
.
.
Предикат, определяющий взаимное расположение точек
и по ординате, выглядит следующим образом:
Т.к.
, то можно оценивать знак выражения
Рассмотрим это выражение в дабловой арифметике. Обозначим за