Изменения

Перейти к: навигация, поиск

Формула Эйлера

32 байта добавлено, 00:32, 15 марта 2012
Нет описания правки
<br/><tex>V - E + F = 2</tex>
|proof=
[[Файл:Eulerformul1.png|150px|thumb|right|рис. 1]][[Файл:Eulerformul2.png|150px|thumb|right|рис. 2]]
Воспользуемся методом математической индукции по количеству граней графа.
<br />
Покажем, что если теорема верна для графов с <tex>F</tex> гранями, то она будет верна и для графов с <tex>F + 1</tex> гранями. Пусть <tex>G</tex> - плоский граф, имеющий <tex>V</tex> вершин, <tex>E</tex> ребер и <tex>F</tex> граней, и для него справедлива формула Эйлера. Добавим новую грань (пунктирная линия на рис.2), проводя по внешней грани <tex>F_{\infty}</tex> некоторую элементарную цепь, соединяющую две вершины максимального цикла графа <tex>G</tex>. Если эта цепь имеет <tex>r</tex> ребер, то необходимо добавить <tex>r - 1</tex> новых вершин и одну новую грань. Ясно, что формула Эйлера останется справедливой и для нового графа, так как <tex>V' - E' + F' = (V + r - 1) - (E + r) + (F + 1) = V - E + F</tex>
}}
 
{|align="center"
|-valign="top"
|[[Файл:Eulerformul1.png|300px|thumb|рис. 1]]
|[[Файл:Eulerformul2.png|300px|thumb|рис. 2]]
|}
 
{{Теорема
|id=EulerFormulaCons
144
правки

Навигация