Укладка графа с планарными компонентами вершинной двусвязности — различия между версиями
Строка 13: | Строка 13: | ||
Предварительно заметим, что в доказательстве используются утверждения [[Укладка графа с планарными компонентами реберной двусвязности#l1|леммы I]] и [[Укладка графа с планарными компонентами реберной двусвязности#l2|леммы II]] из статьи [[Укладка графа с планарными компонентами реберной двусвязности]]. Итак, уложим <tex>G_2</tex> на сфере и уложим <tex>G_1</tex> на плоскости так, чтобы ребро <tex>e_1 \in G_1</tex> смежное с <tex>v_1</tex> (если таковое имеется) оказалось на границе внешней грани (по [[#l2|лемме II]] это возможно). Если такого ребра <tex>e_1</tex> не существует, значит вершина <tex>v_1</tex> изолирована, в таком случае возьмем любую укладку <tex>G_1</tex> на плоскости и переместим точку, соответствующую <tex>v_1</tex> во внешнюю грань. Иначе сожмем часть плоскости, содержащую укладку <tex>G_1</tex> так, чтобы она вмещалась в одну из граней укладки <tex>G_2</tex> смежную с <tex>v_1</tex>. Рассмотрим множество <tex>U</tex> вершин смежных с <tex>v_1</tex>. Уберем кривые, соответствующие ребрам, инцидентным <tex>v_1</tex>. Ясно, что после этого множество вершин <tex>U</tex> лежит на внешней границе укладки <tex>G_1</tex>. Соединим теперь каждую вершину из <tex>U</tex> c <tex>v_2</tex> непересекающимися жордановыми линиями так, чтобы они не задевали укладок <tex>G_1</tex> и <tex>G_2</tex> (рис. 1). Таким образом мы совместили вершины <tex>v_1</tex> и <tex>v_2</tex> в вершине <tex>v_2</tex>, а значит получили укладку графа <tex>G</tex> на сфере, следовательно <tex>G</tex> - планарен. | Предварительно заметим, что в доказательстве используются утверждения [[Укладка графа с планарными компонентами реберной двусвязности#l1|леммы I]] и [[Укладка графа с планарными компонентами реберной двусвязности#l2|леммы II]] из статьи [[Укладка графа с планарными компонентами реберной двусвязности]]. Итак, уложим <tex>G_2</tex> на сфере и уложим <tex>G_1</tex> на плоскости так, чтобы ребро <tex>e_1 \in G_1</tex> смежное с <tex>v_1</tex> (если таковое имеется) оказалось на границе внешней грани (по [[#l2|лемме II]] это возможно). Если такого ребра <tex>e_1</tex> не существует, значит вершина <tex>v_1</tex> изолирована, в таком случае возьмем любую укладку <tex>G_1</tex> на плоскости и переместим точку, соответствующую <tex>v_1</tex> во внешнюю грань. Иначе сожмем часть плоскости, содержащую укладку <tex>G_1</tex> так, чтобы она вмещалась в одну из граней укладки <tex>G_2</tex> смежную с <tex>v_1</tex>. Рассмотрим множество <tex>U</tex> вершин смежных с <tex>v_1</tex>. Уберем кривые, соответствующие ребрам, инцидентным <tex>v_1</tex>. Ясно, что после этого множество вершин <tex>U</tex> лежит на внешней границе укладки <tex>G_1</tex>. Соединим теперь каждую вершину из <tex>U</tex> c <tex>v_2</tex> непересекающимися жордановыми линиями так, чтобы они не задевали укладок <tex>G_1</tex> и <tex>G_2</tex> (рис. 1). Таким образом мы совместили вершины <tex>v_1</tex> и <tex>v_2</tex> в вершине <tex>v_2</tex>, а значит получили укладку графа <tex>G</tex> на сфере, следовательно <tex>G</tex> - планарен. | ||
− | [[Файл: | + | [[Файл: Planar_vertex_biconnected_1.png|300px|center|thumb|рис. 1.]] |
}} | }} | ||
Версия 01:11, 15 марта 2012
Теорема (об укладке графа с планарными компонентами вершинной двусвязности): | ||||||
Доказательство: | ||||||
Докажем вспомогательную лемму.
Докажем утверждение теоремы для одной из компоненты связности графа леммы и из связности получаем, что — двудольное дерево. . Ясно, что имея укладки на плоскости каждой из компонент связности графа, мы можем получить укладку на плоскости и всего графа. Итак пусть граф связен. Если , то очевидно планерен, поэтому предположим, что , а значит имеется по-крайней мере один блок в . Рассмотрим связный подграф графа блоков и точек сочленений графа такой, что - т.с. имеем . ИзДокажем индукцией по числу вершин в графе , что подграф графа состоящий из блоков графа принадлежащих графу планарен (далее будем говорить, что соответствует ).База индукции. Если , то граф тривиальный. Его единственная вершина — это блок графа , который по утверждению теоремы планарен.Индукционный переход. Пусть утверждение верно для . Рассмотрим , для которого , и соответствующий подграф графа . Докажем, что планарен.Положим — это блок графа являющийся висячей вершиной дерева (вспомним, что в дереве, в котором более одной вершины, всегда есть есть висячие вершины, и то, что висячими вершинами в графе блоков и т.с. не могут быть т.с.), a — т.с. в смежная с в . планарен по утверждению теоремы, т.к. блоки графа совпадают с блоками графа . Заметим, что , т.к. — т.с., следовательно не висячая. Рассмотрим два случая:
Рассмотрим подграф графа соответствующий дереву . Поскольку связен, степени вершин в соответствующих т.с. графа удовлетворяют предположению индукции и, очевидно, также как и граф является подграфом графа блоков и точек сочленений , получим, что планарен по предположению индукции, т.к. .Из определения ребер дерева блоков и точек сочленений получаем, что графы леммы I, поэтому получим укладку из укладок и так, как это сделано в доказательстве леммы. Получаем, что планарен. А значит предположение индукции верно. и имеют единственную общую точку — точку сочленения . Поскольку множество блоков принадлежащих состоит из и множества блоков , то . удовлетворяют условию | ||||||
Замечание. В доказательстве теоремы непосредственно указывается способ получения укладки графа
из имеющихся укладок его блоков.Источники
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5
- H. Whitney Non-separable and planar graphs — Trans. Amer. Math. Soc., 1932.