Сведение по Карпу — различия между версиями
(→Теорема) |
(→Доказательство) |
||
Строка 21: | Строка 21: | ||
Операция сведения по Карпу транзитивна. Т.е. если <tex>A \le B</tex>, <tex>B \le C</tex>, то <tex>A \le C</tex>. | Операция сведения по Карпу транзитивна. Т.е. если <tex>A \le B</tex>, <tex>B \le C</tex>, то <tex>A \le C</tex>. | ||
− | ==Доказательство== | + | ==Доказательство транзитивности== |
Пусть <tex>A \le B</tex>. Тогда существует функция <tex>f</tex>: <tex>x \in A \LongArrow f(x) \in B</tex>. Пусть в свою очередь <tex>B \le C</tex> и есть функция <tex>g</tex>: <tex>y \in B \LongArrow g(y) \in C</tex>. | Пусть <tex>A \le B</tex>. Тогда существует функция <tex>f</tex>: <tex>x \in A \LongArrow f(x) \in B</tex>. Пусть в свою очередь <tex>B \le C</tex> и есть функция <tex>g</tex>: <tex>y \in B \LongArrow g(y) \in C</tex>. | ||
− | Рассмотрим функция <tex>h(x) = g(f(x))</tex>. <tex>x \in A \ | + | Рассмотрим функция <tex>h(x) = g(f(x))</tex>. <tex>x \in A \Longarrow f(x) \in B</tex>. Также <tex>f(x) \in B \LongArrow g(f(x)) \in C</tex>. Т.е. <tex>x \in A \LongArrow h(x) = g(f(x)) \in C </tex>. Проверим, что функция <tex>h(x)</tex> вычислима за полиномиальное время от длины входа. Для вычисления значения функции <tex>h(x)</tex> сначала нужно вычислить <tex>f(x)</tex>. Время вычисления <tex>f(x)</tex> ограничено сверху некоторым полиномом <tex>p_1(|x|)</tex>, т.к. эта функция применяется в сведении по Карпу. Затем нужно вычислить <tex>g(f(x))</tex>. Пусть <tex>t = f(x)</tex>. Т.к. за единицу времени может быть написан лишь один символ, то <tex>|t| < p_1(|x|)</tex>. Время вычисления <tex>g(t)</tex> ограничено сверху некоторым полиномом <tex>p_2(|t|)</tex>. Т.о. время вычисления <tex>h(x)</tex> не больше <tex>p_2(p_1(|x|)) + p_1(|x|)<tex>. |
Версия 20:48, 14 марта 2010
Определение
Язык
сводится по Карпу к языку , если существует функция такая, что тогда и только тогда, когда .Обычно требуют, чтобы сводящая функция была вычислима за полиномиальное время от длины входа.
Заметим, что в таком случае класс языков
замкнут относительно сведения по Карпу, т.к. сводящая функция может решить сводимую задачу за полиномиальное время от длины входа и выдать нужный результат.Пример
Рассмотрим следующие языки:
и — множества пар , где — граф, — натуральное число. Пара принадлежит , если в графе есть подграф с вершинами, в котором все вершины не связаны ребрами. Пара принадлежит , если в графе есть подграф с вершинами, в котором между каждой парой вершин проходит ребро.Существует функция
такая, что , где — граф, в котором столько же вершин, сколько и в , а ребра расставлены следующим образом: если в графе между вершинами и есть ребро, то в графе это ребро не проводится, если же в графе между этими вершинами его не было, то в оно есть между соответствующими вершинами. Эта функция вычисляется за линейное время от длины входа, если представлять граф в виде матрицы смежности.Заметим, что если в графе
был независимый подграф с вершинами, то в между всеми вершинами подграфа будут ребра, следовательно, в графе будет клика с вершинами.С другой стороны, если в
есть клика с вершинами, значит между всеми вершинами клики проведены ребра, а значит их не было в графе . Т.о. в графе был независимый подграф с вершинами.Из всего сказанного следует, что
.Теорема о транзитивности
Операция сведения по Карпу транзитивна. Т.е. если
, , то .Доказательство транзитивности
Пусть
. Тогда существует функция : . Пусть в свою очередь и есть функция : .Рассмотрим функция
. . Также . Т.е. . Проверим, что функция вычислима за полиномиальное время от длины входа. Для вычисления значения функции сначала нужно вычислить . Время вычисления ограничено сверху некоторым полиномом , т.к. эта функция применяется в сведении по Карпу. Затем нужно вычислить . Пусть . Т.к. за единицу времени может быть написан лишь один символ, то . Время вычисления ограничено сверху некоторым полиномом . Т.о. время вычисления не больше <tex>p_2(p_1(|x|)) + p_1(|x|)<tex>.