Материал из Викиконспекты
|
|
Строка 1: |
Строка 1: |
− | {{В разработке}}
| + | #REDIRECT [[Дискретное логарифмирование в группе]] |
− | | |
− | Рассмотрим конечную группу <math>G</math>. Для заданного <math>a</math> необходимо найти такое минимальное <math>n</math>, что <math>a^n=e</math>. <br>
| |
− | Теперь рассмотрим '''обобщенную задачу поиска порядка''', также называемую '''задачей дискретного логарифмирования''': для заданных <math>a</math> и <math>b</math> из группы найти такое минимальное <math>n</math>, что <math>a ^ n = b</math>. <br>
| |
− | Очевидно, <math>n < |G| </math> (следует из принципа Дирихле). Пусть <math>m = \lceil |G| \rceil</math>. Будем искать <math>n</math> в виде <math>xm-y</math>, где <math>y \in 0 \dots m - 1</math> и <math>x \in 1 \dots m</math>.<br>
| |
− | <math>a ^ n = a ^ {xm - y} = b</math> <br>
| |
− | <math>a ^ {xm} = b a ^ {y}</math> <br>
| |
− | <math> {a ^ m} ^ x = b a ^ y </math> <br>
| |
− | | |
− | Далее мы выписываем все полученные выражения для левой и правой частей при всех допустимых <math>x</math> и <math>y</math> (или складываем в удобную структуру данных: отсортированный массив, хеш, дерево и т. д.). После чего ищем пересечение. Для каждого элемента одной части поиск в структуре данных для другой части (в случае с отсортированным массивом) занимает время <math>O(log |G|)</math>. Учитывая, что время на предварительную обработку <math>O(|G|)</math>, общее время работы алгоритма − <math>O(|G| log |G|)</math>.
| |
Версия 23:22, 28 июня 2010