Теорема Бейкера — Гилла — Соловэя — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 3: Строка 3:
 
| proof =  
 
| proof =  
 
* Покажем существование такого оракула <tex>A</tex>, что <tex>\mathrm{P^A} = \mathrm{NP^A} </tex>. Рассмотрим язык <tex> \mathrm{TQBF} = \{ \Phi | \Phi \--</tex> булева формула с кванторами <tex>, \Phi = 1\}</tex>. [[PS-полнота языка верных булевых формул с кванторами (TQBF) | <tex> \mathrm{TQBF} </tex> является <tex>PS</tex>-полным языком]].
 
* Покажем существование такого оракула <tex>A</tex>, что <tex>\mathrm{P^A} = \mathrm{NP^A} </tex>. Рассмотрим язык <tex> \mathrm{TQBF} = \{ \Phi | \Phi \--</tex> булева формула с кванторами <tex>, \Phi = 1\}</tex>. [[PS-полнота языка верных булевых формул с кванторами (TQBF) | <tex> \mathrm{TQBF} </tex> является <tex>PS</tex>-полным языком]].
 +
**<tex> \mathrm{P} \subset \mathrm{NP} \Rightarrow \mathrm{P^{TQBF}} \subset \mathrm{NP^{TQBF}} </tex>
 
}}
 
}}

Версия 22:49, 15 апреля 2012

Теорема:
Существуют такие оракулы [math]A[/math] и [math]B[/math], что [math]\mathrm{P^A} = \mathrm{NP^A} [/math] и [math]\mathrm{P^B} \ne \mathrm{NP^B} [/math]
Доказательство:
[math]\triangleright[/math]
  • Покажем существование такого оракула [math]A[/math], что [math]\mathrm{P^A} = \mathrm{NP^A} [/math]. Рассмотрим язык [math] \mathrm{TQBF} = \{ \Phi | \Phi \--[/math] булева формула с кванторами [math], \Phi = 1\}[/math]. [math] \mathrm{TQBF} [/math] является [math]PS[/math]-полным языком.
    • [math] \mathrm{P} \subset \mathrm{NP} \Rightarrow \mathrm{P^{TQBF}} \subset \mathrm{NP^{TQBF}} [/math]
[math]\triangleleft[/math]