Теорема Махэни — различия между версиями
м |
м |
||
Строка 10: | Строка 10: | ||
#Очевидно, что <tex>LSAT \in NP</tex>. | #Очевидно, что <tex>LSAT \in NP</tex>. | ||
#Сведём <tex>SAT</tex> к <tex>LSAT</tex>. Для этого рассмотрим отображение <tex>\phi \mapsto \langle \phi, 1^m\rangle</tex>, где <tex>m</tex> — количество различных аргументов в формуле <tex>\phi</tex>. Ясно, что данное преобразование можно сделать за полиномиальное время. Теперь докажем, что сведение верное. | #Сведём <tex>SAT</tex> к <tex>LSAT</tex>. Для этого рассмотрим отображение <tex>\phi \mapsto \langle \phi, 1^m\rangle</tex>, где <tex>m</tex> — количество различных аргументов в формуле <tex>\phi</tex>. Ясно, что данное преобразование можно сделать за полиномиальное время. Теперь докажем, что сведение верное. | ||
− | #*Если <tex>\phi \in SAT</tex>, то формула <tex>\phi</tex> удовлетворима, а значит <tex>\exists x: x le_{lex} 1^m, \phi(x)=1</tex>. Следовательно, <tex>\langle \phi, 1^m\rangle \in LSAT</tex>. | + | #*Если <tex>\phi \in SAT</tex>, то формула <tex>\phi</tex> удовлетворима, а значит <tex>\exists x: x \le_{lex} 1^m, \phi(x)=1</tex>. Следовательно, <tex>\langle \phi, 1^m\rangle \in LSAT</tex>. |
#*Если <tex>\langle \phi, 1^m\rangle \in LSAT</tex>, то <tex>\exists x: x \le_{lex} 1^m, \phi(x)=1</tex>. Значит формула <tex>\phi</tex> удовлетворима, и <tex>\phi \in SAT</tex>. | #*Если <tex>\langle \phi, 1^m\rangle \in LSAT</tex>, то <tex>\exists x: x \le_{lex} 1^m, \phi(x)=1</tex>. Значит формула <tex>\phi</tex> удовлетворима, и <tex>\phi \in SAT</tex>. | ||
:Таким образом, <tex>SAT \le LSAT</tex>. Но <tex>SAT \in NPC</tex>, а значит <tex>\forall L \in NP \; L \le SAT</tex>. Тогда в силу транзитивности <tex>\forall L \in NP \; L \le LSAT</tex>, то есть <tex>LSAT \in NPH</tex>. | :Таким образом, <tex>SAT \le LSAT</tex>. Но <tex>SAT \in NPC</tex>, а значит <tex>\forall L \in NP \; L \le SAT</tex>. Тогда в силу транзитивности <tex>\forall L \in NP \; L \le LSAT</tex>, то есть <tex>LSAT \in NPH</tex>. |
Версия 11:20, 16 апреля 2012
Определение: |
. |
Лемма (1): |
. |
Доказательство: |
|
Лемма (2): |
. Тогда . |
Доказательство: |
. Тогда . Так как , то , следовательно . |
Теорема (Махэни): |
. |
Доказательство: |
Пусть .Так как , и , то существует полиномиальная функция сведения такая, что .Так как функция работает полиномиальное время, и , то , где — полином. . Следовательно, , где — некоторый полином.Тогда , где — также полином.Опишем алгоритм для нахождения лексиграфически минимальной строки , удовлетворяющей формулу .Пусть . Разобьём множество бинарных строк длины на подотрезок так, чтобы каждый подотрезок содержал не более строк. Обозначим концы полученных подотрезков . Пусть теперь .Из леммы 2 мы знаем, что, начиная с некоторого , все пары . Тогда по сведению для всех .Рассмотрим два случая:
В обоих случаях мы сузили область поиска как минимум на её размера. Будем повторять эту процедуру до тех пор, пока не останется не более строки, которые мы можем проверить за полиномиальное время. Если какая-то из них удовлетворила формулу , то удовлетворяет . Иначе, не существует.Оценим время работы нашего алгоритма. После итераций у нас останется не более строк. Оценим . . Отсюда . Таким образом, мы можем разрешить язык за полиномиальное время, найдя лексиграфически минимальную строку, удовлетворяющую формулу, и сравнив её с нашим аргументом. Так как , то мы можем решить любую задачу из за полиномиальное время, а значит . |